Aromātai
-\frac{1307}{44}\approx -29.704545455
Tauwehe
-\frac{1307}{44} = -29\frac{31}{44} = -29.704545454545453
Tohaina
Kua tāruatia ki te papatopenga
\frac{65-\frac{52}{2}}{\left(\left(43-26\right)\times 2+32\right)\times 2}-\frac{50+40}{3}
Tuhia te \frac{\frac{65-\frac{52}{2}}{\left(43-26\right)\times 2+32}}{2} hei hautanga kotahi.
\frac{65-26}{\left(\left(43-26\right)\times 2+32\right)\times 2}-\frac{50+40}{3}
Whakawehea te 52 ki te 2, kia riro ko 26.
\frac{39}{\left(\left(43-26\right)\times 2+32\right)\times 2}-\frac{50+40}{3}
Tangohia te 26 i te 65, ka 39.
\frac{39}{\left(17\times 2+32\right)\times 2}-\frac{50+40}{3}
Tangohia te 26 i te 43, ka 17.
\frac{39}{\left(34+32\right)\times 2}-\frac{50+40}{3}
Whakareatia te 17 ki te 2, ka 34.
\frac{39}{66\times 2}-\frac{50+40}{3}
Tāpirihia te 34 ki te 32, ka 66.
\frac{39}{132}-\frac{50+40}{3}
Whakareatia te 66 ki te 2, ka 132.
\frac{13}{44}-\frac{50+40}{3}
Whakahekea te hautanga \frac{39}{132} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{13}{44}-\frac{90}{3}
Tāpirihia te 50 ki te 40, ka 90.
\frac{13}{44}-30
Whakawehea te 90 ki te 3, kia riro ko 30.
\frac{13}{44}-\frac{1320}{44}
Me tahuri te 30 ki te hautau \frac{1320}{44}.
\frac{13-1320}{44}
Tā te mea he rite te tauraro o \frac{13}{44} me \frac{1320}{44}, me tango rāua mā te tango i ō raua taurunga.
-\frac{1307}{44}
Tangohia te 1320 i te 13, ka -1307.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}