Whakaoti mō D_0
D_{0}=\frac{4XY+40Y+5Y_{3}}{4077}
Whakaoti mō X
\left\{\begin{matrix}X=-\frac{\frac{5Y_{3}}{2}-\frac{4077D_{0}}{2}+20Y}{2Y}\text{, }&Y\neq 0\\X\in \mathrm{R}\text{, }&Y_{3}=\frac{4077D_{0}}{5}\text{ and }Y=0\end{matrix}\right.
Tohaina
Kua tāruatia ki te papatopenga
-5.5Y_{3}-25Y-\left(2XY-3Y_{3}-5Y\right)=-2038.5D_{0}
Pahekotia te 3.5Y_{3} me -9Y_{3}, ka -5.5Y_{3}.
-5.5Y_{3}-25Y-2XY+3Y_{3}+5Y=-2038.5D_{0}
Hei kimi i te tauaro o 2XY-3Y_{3}-5Y, kimihia te tauaro o ia taurangi.
-2.5Y_{3}-25Y-2XY+5Y=-2038.5D_{0}
Pahekotia te -5.5Y_{3} me 3Y_{3}, ka -2.5Y_{3}.
-2.5Y_{3}-20Y-2XY=-2038.5D_{0}
Pahekotia te -25Y me 5Y, ka -20Y.
-2038.5D_{0}=-2.5Y_{3}-20Y-2XY
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-2038.5D_{0}=-2XY-\frac{5Y_{3}}{2}-20Y
He hanga arowhānui tō te whārite.
\frac{-2038.5D_{0}}{-2038.5}=\frac{-2XY-\frac{5Y_{3}}{2}-20Y}{-2038.5}
Whakawehea ngā taha e rua o te whārite ki te -2038.5, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
D_{0}=\frac{-2XY-\frac{5Y_{3}}{2}-20Y}{-2038.5}
Mā te whakawehe ki te -2038.5 ka wetekia te whakareanga ki te -2038.5.
D_{0}=\frac{4XY+40Y+5Y_{3}}{4077}
Whakawehe -\frac{5Y_{3}}{2}-20Y-2XY ki te -2038.5 mā te whakarea -\frac{5Y_{3}}{2}-20Y-2XY ki te tau huripoki o -2038.5.
-5.5Y_{3}-25Y-\left(2XY-3Y_{3}-5Y\right)=-2038.5D_{0}
Pahekotia te 3.5Y_{3} me -9Y_{3}, ka -5.5Y_{3}.
-5.5Y_{3}-25Y-2XY+3Y_{3}+5Y=-2038.5D_{0}
Hei kimi i te tauaro o 2XY-3Y_{3}-5Y, kimihia te tauaro o ia taurangi.
-2.5Y_{3}-25Y-2XY+5Y=-2038.5D_{0}
Pahekotia te -5.5Y_{3} me 3Y_{3}, ka -2.5Y_{3}.
-2.5Y_{3}-20Y-2XY=-2038.5D_{0}
Pahekotia te -25Y me 5Y, ka -20Y.
-20Y-2XY=-2038.5D_{0}+2.5Y_{3}
Me tāpiri te 2.5Y_{3} ki ngā taha e rua.
-2XY=-2038.5D_{0}+2.5Y_{3}+20Y
Me tāpiri te 20Y ki ngā taha e rua.
\left(-2Y\right)X=\frac{5Y_{3}}{2}-\frac{4077D_{0}}{2}+20Y
He hanga arowhānui tō te whārite.
\frac{\left(-2Y\right)X}{-2Y}=\frac{\frac{5Y_{3}}{2}-\frac{4077D_{0}}{2}+20Y}{-2Y}
Whakawehea ngā taha e rua ki te -2Y.
X=\frac{\frac{5Y_{3}}{2}-\frac{4077D_{0}}{2}+20Y}{-2Y}
Mā te whakawehe ki te -2Y ka wetekia te whakareanga ki te -2Y.
X=-\frac{5Y_{3}+40Y-4077D_{0}}{4Y}
Whakawehe -\frac{4077D_{0}}{2}+\frac{5Y_{3}}{2}+20Y ki te -2Y.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}