Aromātai
\frac{36}{5}=7.2
Tauwehe
\frac{2 ^ {2} \cdot 3 ^ {2}}{5} = 7\frac{1}{5} = 7.2
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{\frac{12+1}{4}}{\frac{1\times 4+1}{4}-\frac{1}{2}\left(\frac{2\times 2+1}{2}-\frac{1}{4}-\frac{1}{6}\right)}}{\frac{1}{2}\times \frac{4\times 3+1}{3}}
Whakareatia te 3 ki te 4, ka 12.
\frac{\frac{\frac{13}{4}}{\frac{1\times 4+1}{4}-\frac{1}{2}\left(\frac{2\times 2+1}{2}-\frac{1}{4}-\frac{1}{6}\right)}}{\frac{1}{2}\times \frac{4\times 3+1}{3}}
Tāpirihia te 12 ki te 1, ka 13.
\frac{\frac{\frac{13}{4}}{\frac{4+1}{4}-\frac{1}{2}\left(\frac{2\times 2+1}{2}-\frac{1}{4}-\frac{1}{6}\right)}}{\frac{1}{2}\times \frac{4\times 3+1}{3}}
Whakareatia te 1 ki te 4, ka 4.
\frac{\frac{\frac{13}{4}}{\frac{5}{4}-\frac{1}{2}\left(\frac{2\times 2+1}{2}-\frac{1}{4}-\frac{1}{6}\right)}}{\frac{1}{2}\times \frac{4\times 3+1}{3}}
Tāpirihia te 4 ki te 1, ka 5.
\frac{\frac{\frac{13}{4}}{\frac{5}{4}-\frac{1}{2}\left(\frac{4+1}{2}-\frac{1}{4}-\frac{1}{6}\right)}}{\frac{1}{2}\times \frac{4\times 3+1}{3}}
Whakareatia te 2 ki te 2, ka 4.
\frac{\frac{\frac{13}{4}}{\frac{5}{4}-\frac{1}{2}\left(\frac{5}{2}-\frac{1}{4}-\frac{1}{6}\right)}}{\frac{1}{2}\times \frac{4\times 3+1}{3}}
Tāpirihia te 4 ki te 1, ka 5.
\frac{\frac{\frac{13}{4}}{\frac{5}{4}-\frac{1}{2}\left(\frac{10}{4}-\frac{1}{4}-\frac{1}{6}\right)}}{\frac{1}{2}\times \frac{4\times 3+1}{3}}
Ko te maha noa iti rawa atu o 2 me 4 ko 4. Me tahuri \frac{5}{2} me \frac{1}{4} ki te hautau me te tautūnga 4.
\frac{\frac{\frac{13}{4}}{\frac{5}{4}-\frac{1}{2}\left(\frac{10-1}{4}-\frac{1}{6}\right)}}{\frac{1}{2}\times \frac{4\times 3+1}{3}}
Tā te mea he rite te tauraro o \frac{10}{4} me \frac{1}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{\frac{13}{4}}{\frac{5}{4}-\frac{1}{2}\left(\frac{9}{4}-\frac{1}{6}\right)}}{\frac{1}{2}\times \frac{4\times 3+1}{3}}
Tangohia te 1 i te 10, ka 9.
\frac{\frac{\frac{13}{4}}{\frac{5}{4}-\frac{1}{2}\left(\frac{27}{12}-\frac{2}{12}\right)}}{\frac{1}{2}\times \frac{4\times 3+1}{3}}
Ko te maha noa iti rawa atu o 4 me 6 ko 12. Me tahuri \frac{9}{4} me \frac{1}{6} ki te hautau me te tautūnga 12.
\frac{\frac{\frac{13}{4}}{\frac{5}{4}-\frac{1}{2}\times \frac{27-2}{12}}}{\frac{1}{2}\times \frac{4\times 3+1}{3}}
Tā te mea he rite te tauraro o \frac{27}{12} me \frac{2}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{\frac{13}{4}}{\frac{5}{4}-\frac{1}{2}\times \frac{25}{12}}}{\frac{1}{2}\times \frac{4\times 3+1}{3}}
Tangohia te 2 i te 27, ka 25.
\frac{\frac{\frac{13}{4}}{\frac{5}{4}-\frac{1\times 25}{2\times 12}}}{\frac{1}{2}\times \frac{4\times 3+1}{3}}
Me whakarea te \frac{1}{2} ki te \frac{25}{12} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{\frac{13}{4}}{\frac{5}{4}-\frac{25}{24}}}{\frac{1}{2}\times \frac{4\times 3+1}{3}}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 25}{2\times 12}.
\frac{\frac{\frac{13}{4}}{\frac{30}{24}-\frac{25}{24}}}{\frac{1}{2}\times \frac{4\times 3+1}{3}}
Ko te maha noa iti rawa atu o 4 me 24 ko 24. Me tahuri \frac{5}{4} me \frac{25}{24} ki te hautau me te tautūnga 24.
\frac{\frac{\frac{13}{4}}{\frac{30-25}{24}}}{\frac{1}{2}\times \frac{4\times 3+1}{3}}
Tā te mea he rite te tauraro o \frac{30}{24} me \frac{25}{24}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{\frac{13}{4}}{\frac{5}{24}}}{\frac{1}{2}\times \frac{4\times 3+1}{3}}
Tangohia te 25 i te 30, ka 5.
\frac{\frac{13}{4}\times \frac{24}{5}}{\frac{1}{2}\times \frac{4\times 3+1}{3}}
Whakawehe \frac{13}{4} ki te \frac{5}{24} mā te whakarea \frac{13}{4} ki te tau huripoki o \frac{5}{24}.
\frac{\frac{13\times 24}{4\times 5}}{\frac{1}{2}\times \frac{4\times 3+1}{3}}
Me whakarea te \frac{13}{4} ki te \frac{24}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{312}{20}}{\frac{1}{2}\times \frac{4\times 3+1}{3}}
Mahia ngā whakarea i roto i te hautanga \frac{13\times 24}{4\times 5}.
\frac{\frac{78}{5}}{\frac{1}{2}\times \frac{4\times 3+1}{3}}
Whakahekea te hautanga \frac{312}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{\frac{78}{5}}{\frac{1}{2}\times \frac{12+1}{3}}
Whakareatia te 4 ki te 3, ka 12.
\frac{\frac{78}{5}}{\frac{1}{2}\times \frac{13}{3}}
Tāpirihia te 12 ki te 1, ka 13.
\frac{\frac{78}{5}}{\frac{1\times 13}{2\times 3}}
Me whakarea te \frac{1}{2} ki te \frac{13}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{78}{5}}{\frac{13}{6}}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 13}{2\times 3}.
\frac{78}{5}\times \frac{6}{13}
Whakawehe \frac{78}{5} ki te \frac{13}{6} mā te whakarea \frac{78}{5} ki te tau huripoki o \frac{13}{6}.
\frac{78\times 6}{5\times 13}
Me whakarea te \frac{78}{5} ki te \frac{6}{13} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{468}{65}
Mahia ngā whakarea i roto i te hautanga \frac{78\times 6}{5\times 13}.
\frac{36}{5}
Whakahekea te hautanga \frac{468}{65} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 13.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}