Aromātai
2\left(x+3\right)
Whakaroha
2x+6
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(2-\left(1-\frac{1}{2}x\times \frac{2}{3}\right)\right)\left(7+\left(-1\right)^{3}\right)
Me tahuri ki tau ā-ira 0.5 ki te hautau \frac{5}{10}. Whakahekea te hautanga \frac{5}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\left(2-\left(1-\frac{1\times 2}{2\times 3}x\right)\right)\left(7+\left(-1\right)^{3}\right)
Me whakarea te \frac{1}{2} ki te \frac{2}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\left(2-\left(1-\frac{1}{3}x\right)\right)\left(7+\left(-1\right)^{3}\right)
Me whakakore tahi te 2 i te taurunga me te tauraro.
\left(2-1-\left(-\frac{1}{3}x\right)\right)\left(7+\left(-1\right)^{3}\right)
Hei kimi i te tauaro o 1-\frac{1}{3}x, kimihia te tauaro o ia taurangi.
\left(2-1+\frac{1}{3}x\right)\left(7+\left(-1\right)^{3}\right)
Ko te tauaro o -\frac{1}{3}x ko \frac{1}{3}x.
\left(1+\frac{1}{3}x\right)\left(7+\left(-1\right)^{3}\right)
Tangohia te 1 i te 2, ka 1.
\left(1+\frac{1}{3}x\right)\left(7-1\right)
Tātaihia te -1 mā te pū o 3, kia riro ko -1.
\left(1+\frac{1}{3}x\right)\times 6
Tangohia te 1 i te 7, ka 6.
6+\frac{1}{3}x\times 6
Whakamahia te āhuatanga tohatoha hei whakarea te 1+\frac{1}{3}x ki te 6.
6+\frac{6}{3}x
Whakareatia te \frac{1}{3} ki te 6, ka \frac{6}{3}.
6+2x
Whakawehea te 6 ki te 3, kia riro ko 2.
\left(2-\left(1-\frac{1}{2}x\times \frac{2}{3}\right)\right)\left(7+\left(-1\right)^{3}\right)
Me tahuri ki tau ā-ira 0.5 ki te hautau \frac{5}{10}. Whakahekea te hautanga \frac{5}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\left(2-\left(1-\frac{1\times 2}{2\times 3}x\right)\right)\left(7+\left(-1\right)^{3}\right)
Me whakarea te \frac{1}{2} ki te \frac{2}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\left(2-\left(1-\frac{1}{3}x\right)\right)\left(7+\left(-1\right)^{3}\right)
Me whakakore tahi te 2 i te taurunga me te tauraro.
\left(2-1-\left(-\frac{1}{3}x\right)\right)\left(7+\left(-1\right)^{3}\right)
Hei kimi i te tauaro o 1-\frac{1}{3}x, kimihia te tauaro o ia taurangi.
\left(2-1+\frac{1}{3}x\right)\left(7+\left(-1\right)^{3}\right)
Ko te tauaro o -\frac{1}{3}x ko \frac{1}{3}x.
\left(1+\frac{1}{3}x\right)\left(7+\left(-1\right)^{3}\right)
Tangohia te 1 i te 2, ka 1.
\left(1+\frac{1}{3}x\right)\left(7-1\right)
Tātaihia te -1 mā te pū o 3, kia riro ko -1.
\left(1+\frac{1}{3}x\right)\times 6
Tangohia te 1 i te 7, ka 6.
6+\frac{1}{3}x\times 6
Whakamahia te āhuatanga tohatoha hei whakarea te 1+\frac{1}{3}x ki te 6.
6+\frac{6}{3}x
Whakareatia te \frac{1}{3} ki te 6, ka \frac{6}{3}.
6+2x
Whakawehea te 6 ki te 3, kia riro ko 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}