Aromātai
\frac{17}{15}\approx 1.133333333
Tauwehe
\frac{17}{3 \cdot 5} = 1\frac{2}{15} = 1.1333333333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{6+2}{3}\times \frac{\frac{2\times 4+1}{4}}{\frac{1\times 8+1}{8}+\frac{2\times 4+1}{4}-\frac{1\times 2+1}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
Whakareatia te 2 ki te 3, ka 6.
\frac{8}{3}\times \frac{\frac{2\times 4+1}{4}}{\frac{1\times 8+1}{8}+\frac{2\times 4+1}{4}-\frac{1\times 2+1}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
Tāpirihia te 6 ki te 2, ka 8.
\frac{8}{3}\times \frac{\frac{8+1}{4}}{\frac{1\times 8+1}{8}+\frac{2\times 4+1}{4}-\frac{1\times 2+1}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
Whakareatia te 2 ki te 4, ka 8.
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{1\times 8+1}{8}+\frac{2\times 4+1}{4}-\frac{1\times 2+1}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
Tāpirihia te 8 ki te 1, ka 9.
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{8+1}{8}+\frac{2\times 4+1}{4}-\frac{1\times 2+1}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
Whakareatia te 1 ki te 8, ka 8.
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{9}{8}+\frac{2\times 4+1}{4}-\frac{1\times 2+1}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
Tāpirihia te 8 ki te 1, ka 9.
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{9}{8}+\frac{8+1}{4}-\frac{1\times 2+1}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
Whakareatia te 2 ki te 4, ka 8.
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{9}{8}+\frac{9}{4}-\frac{1\times 2+1}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
Tāpirihia te 8 ki te 1, ka 9.
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{9}{8}+\frac{18}{8}-\frac{1\times 2+1}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
Ko te maha noa iti rawa atu o 8 me 4 ko 8. Me tahuri \frac{9}{8} me \frac{9}{4} ki te hautau me te tautūnga 8.
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{9+18}{8}-\frac{1\times 2+1}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
Tā te mea he rite te tauraro o \frac{9}{8} me \frac{18}{8}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{27}{8}-\frac{1\times 2+1}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
Tāpirihia te 9 ki te 18, ka 27.
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{27}{8}-\frac{2+1}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
Whakareatia te 1 ki te 2, ka 2.
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{27}{8}-\frac{3}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
Tāpirihia te 2 ki te 1, ka 3.
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{27}{8}-\frac{12}{8}}-\frac{1\times 3+2}{3}-\frac{2}{5}
Ko te maha noa iti rawa atu o 8 me 2 ko 8. Me tahuri \frac{27}{8} me \frac{3}{2} ki te hautau me te tautūnga 8.
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{27-12}{8}}-\frac{1\times 3+2}{3}-\frac{2}{5}
Tā te mea he rite te tauraro o \frac{27}{8} me \frac{12}{8}, me tango rāua mā te tango i ō raua taurunga.
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{15}{8}}-\frac{1\times 3+2}{3}-\frac{2}{5}
Tangohia te 12 i te 27, ka 15.
\frac{8}{3}\times \frac{9}{4}\times \frac{8}{15}-\frac{1\times 3+2}{3}-\frac{2}{5}
Whakawehe \frac{9}{4} ki te \frac{15}{8} mā te whakarea \frac{9}{4} ki te tau huripoki o \frac{15}{8}.
\frac{8}{3}\times \frac{9\times 8}{4\times 15}-\frac{1\times 3+2}{3}-\frac{2}{5}
Me whakarea te \frac{9}{4} ki te \frac{8}{15} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{8}{3}\times \frac{72}{60}-\frac{1\times 3+2}{3}-\frac{2}{5}
Mahia ngā whakarea i roto i te hautanga \frac{9\times 8}{4\times 15}.
\frac{8}{3}\times \frac{6}{5}-\frac{1\times 3+2}{3}-\frac{2}{5}
Whakahekea te hautanga \frac{72}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
\frac{8\times 6}{3\times 5}-\frac{1\times 3+2}{3}-\frac{2}{5}
Me whakarea te \frac{8}{3} ki te \frac{6}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{48}{15}-\frac{1\times 3+2}{3}-\frac{2}{5}
Mahia ngā whakarea i roto i te hautanga \frac{8\times 6}{3\times 5}.
\frac{16}{5}-\frac{1\times 3+2}{3}-\frac{2}{5}
Whakahekea te hautanga \frac{48}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{16}{5}-\frac{3+2}{3}-\frac{2}{5}
Whakareatia te 1 ki te 3, ka 3.
\frac{16}{5}-\frac{5}{3}-\frac{2}{5}
Tāpirihia te 3 ki te 2, ka 5.
\frac{48}{15}-\frac{25}{15}-\frac{2}{5}
Ko te maha noa iti rawa atu o 5 me 3 ko 15. Me tahuri \frac{16}{5} me \frac{5}{3} ki te hautau me te tautūnga 15.
\frac{48-25}{15}-\frac{2}{5}
Tā te mea he rite te tauraro o \frac{48}{15} me \frac{25}{15}, me tango rāua mā te tango i ō raua taurunga.
\frac{23}{15}-\frac{2}{5}
Tangohia te 25 i te 48, ka 23.
\frac{23}{15}-\frac{6}{15}
Ko te maha noa iti rawa atu o 15 me 5 ko 15. Me tahuri \frac{23}{15} me \frac{2}{5} ki te hautau me te tautūnga 15.
\frac{23-6}{15}
Tā te mea he rite te tauraro o \frac{23}{15} me \frac{6}{15}, me tango rāua mā te tango i ō raua taurunga.
\frac{17}{15}
Tangohia te 6 i te 23, ka 17.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}