Aromātai
\frac{7}{4}=1.75
Tauwehe
\frac{7}{2 ^ {2}} = 1\frac{3}{4} = 1.75
Tohaina
Kua tāruatia ki te papatopenga
\left(1+\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+\frac{1}{2}\right)\left(1-\frac{1}{\sqrt{2}}+\frac{1}{2}\right)
Whakangāwaritia te tauraro o \frac{1}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\left(1+\frac{\sqrt{2}}{2}+\frac{1}{2}\right)\left(1-\frac{1}{\sqrt{2}}+\frac{1}{2}\right)
Ko te pūrua o \sqrt{2} ko 2.
\left(\frac{2}{2}+\frac{\sqrt{2}}{2}+\frac{1}{2}\right)\left(1-\frac{1}{\sqrt{2}}+\frac{1}{2}\right)
Me tahuri te 1 ki te hautau \frac{2}{2}.
\left(\frac{2+1}{2}+\frac{\sqrt{2}}{2}\right)\left(1-\frac{1}{\sqrt{2}}+\frac{1}{2}\right)
Tā te mea he rite te tauraro o \frac{2}{2} me \frac{1}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\left(\frac{3}{2}+\frac{\sqrt{2}}{2}\right)\left(1-\frac{1}{\sqrt{2}}+\frac{1}{2}\right)
Tāpirihia te 2 ki te 1, ka 3.
\frac{3+\sqrt{2}}{2}\left(1-\frac{1}{\sqrt{2}}+\frac{1}{2}\right)
Tā te mea he rite te tauraro o \frac{3}{2} me \frac{\sqrt{2}}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3+\sqrt{2}}{2}\left(1-\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+\frac{1}{2}\right)
Whakangāwaritia te tauraro o \frac{1}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{3+\sqrt{2}}{2}\left(1-\frac{\sqrt{2}}{2}+\frac{1}{2}\right)
Ko te pūrua o \sqrt{2} ko 2.
\frac{3+\sqrt{2}}{2}\left(\frac{2}{2}-\frac{\sqrt{2}}{2}+\frac{1}{2}\right)
Me tahuri te 1 ki te hautau \frac{2}{2}.
\frac{3+\sqrt{2}}{2}\left(\frac{2+1}{2}-\frac{\sqrt{2}}{2}\right)
Tā te mea he rite te tauraro o \frac{2}{2} me \frac{1}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3+\sqrt{2}}{2}\left(\frac{3}{2}-\frac{\sqrt{2}}{2}\right)
Tāpirihia te 2 ki te 1, ka 3.
\frac{3+\sqrt{2}}{2}\times \frac{3+\sqrt{2}}{2}
Tā te mea he rite te tauraro o \frac{3}{2} me \frac{\sqrt{2}}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\left(\frac{3+\sqrt{2}}{2}\right)^{2}
Whakareatia te \frac{3+\sqrt{2}}{2} ki te \frac{3+\sqrt{2}}{2}, ka \left(\frac{3+\sqrt{2}}{2}\right)^{2}.
\frac{\left(3+\sqrt{2}\right)^{2}}{2^{2}}
Kia whakarewa i te \frac{3+\sqrt{2}}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{9+6\sqrt{2}+\left(\sqrt{2}\right)^{2}}{2^{2}}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(3+\sqrt{2}\right)^{2}.
\frac{9+6\sqrt{2}+2}{2^{2}}
Ko te pūrua o \sqrt{2} ko 2.
\frac{11+6\sqrt{2}}{2^{2}}
Tāpirihia te 9 ki te 2, ka 11.
\frac{11+6\sqrt{2}}{4}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}