Aromātai
\frac{3}{2}=1.5
Tauwehe
\frac{3}{2} = 1\frac{1}{2} = 1.5
Tohaina
Kua tāruatia ki te papatopenga
0-\frac{1}{2}\times 1+\frac{1}{2}\times 2^{2}-0
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
0-\frac{1}{2}+\frac{1}{2}\times 2^{2}-0
Whakareatia te \frac{1}{2} ki te 1, ka \frac{1}{2}.
-\frac{1}{2}+\frac{1}{2}\times 2^{2}-0
Tangohia te \frac{1}{2} i te 0, ka -\frac{1}{2}.
-\frac{1}{2}+\frac{1}{2}\times 4-0
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
-\frac{1}{2}+\frac{4}{2}-0
Whakareatia te \frac{1}{2} ki te 4, ka \frac{4}{2}.
-\frac{1}{2}+2-0
Whakawehea te 4 ki te 2, kia riro ko 2.
-\frac{1}{2}+2
Tangohia te 0 i te 2, ka 2.
-\frac{1}{2}+\frac{4}{2}
Me tahuri te 2 ki te hautau \frac{4}{2}.
\frac{-1+4}{2}
Tā te mea he rite te tauraro o -\frac{1}{2} me \frac{4}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3}{2}
Tāpirihia te -1 ki te 4, ka 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}