Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(-7\times \frac{\sqrt{3}}{\sqrt{7}}\right)^{2}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{3}{7}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{3}}{\sqrt{7}}.
\left(-7\times \frac{\sqrt{3}\sqrt{7}}{\left(\sqrt{7}\right)^{2}}\right)^{2}
Whakangāwaritia te tauraro o \frac{\sqrt{3}}{\sqrt{7}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{7}.
\left(-7\times \frac{\sqrt{3}\sqrt{7}}{7}\right)^{2}
Ko te pūrua o \sqrt{7} ko 7.
\left(-7\times \frac{\sqrt{21}}{7}\right)^{2}
Hei whakarea \sqrt{3} me \sqrt{7}, whakareatia ngā tau i raro i te pūtake rua.
\left(-\sqrt{21}\right)^{2}
Me whakakore te 7 me te 7.
\left(-1\right)^{2}\left(\sqrt{21}\right)^{2}
Whakarohaina te \left(-\sqrt{21}\right)^{2}.
1\left(\sqrt{21}\right)^{2}
Tātaihia te -1 mā te pū o 2, kia riro ko 1.
1\times 21
Ko te pūrua o \sqrt{21} ko 21.
21
Whakareatia te 1 ki te 21, ka 21.