Aromātai
21
Tauwehe
3\times 7
Tohaina
Kua tāruatia ki te papatopenga
\left(-7\times \frac{\sqrt{3}}{\sqrt{7}}\right)^{2}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{3}{7}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{3}}{\sqrt{7}}.
\left(-7\times \frac{\sqrt{3}\sqrt{7}}{\left(\sqrt{7}\right)^{2}}\right)^{2}
Whakangāwaritia te tauraro o \frac{\sqrt{3}}{\sqrt{7}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{7}.
\left(-7\times \frac{\sqrt{3}\sqrt{7}}{7}\right)^{2}
Ko te pūrua o \sqrt{7} ko 7.
\left(-7\times \frac{\sqrt{21}}{7}\right)^{2}
Hei whakarea \sqrt{3} me \sqrt{7}, whakareatia ngā tau i raro i te pūtake rua.
\left(-\sqrt{21}\right)^{2}
Me whakakore te 7 me te 7.
\left(-1\right)^{2}\left(\sqrt{21}\right)^{2}
Whakarohaina te \left(-\sqrt{21}\right)^{2}.
1\left(\sqrt{21}\right)^{2}
Tātaihia te -1 mā te pū o 2, kia riro ko 1.
1\times 21
Ko te pūrua o \sqrt{21} ko 21.
21
Whakareatia te 1 ki te 21, ka 21.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}