Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(a^{2}-2a-a+2\right)\left(a-3\right)-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o a-1 ki ia tau o a-2.
\frac{\left(a^{2}-3a+2\right)\left(a-3\right)-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}
Pahekotia te -2a me -a, ka -3a.
\frac{a^{3}-3a^{2}-3a^{2}+9a+2a-6-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o a^{2}-3a+2 ki ia tau o a-3.
\frac{a^{3}-6a^{2}+9a+2a-6-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}
Pahekotia te -3a^{2} me -3a^{2}, ka -6a^{2}.
\frac{a^{3}-6a^{2}+11a-6-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}
Pahekotia te 9a me 2a, ka 11a.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{2}+2a+a+2\right)\left(a+3\right)}{-4}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o a+1 ki ia tau o a+2.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{2}+3a+2\right)\left(a+3\right)}{-4}
Pahekotia te 2a me a, ka 3a.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{3}+3a^{2}+3a^{2}+9a+2a+6\right)}{-4}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o a^{2}+3a+2 ki ia tau o a+3.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{3}+6a^{2}+9a+2a+6\right)}{-4}
Pahekotia te 3a^{2} me 3a^{2}, ka 6a^{2}.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{3}+6a^{2}+11a+6\right)}{-4}
Pahekotia te 9a me 2a, ka 11a.
\frac{a^{3}-6a^{2}+11a-6-a^{3}-6a^{2}-11a-6}{-4}
Hei kimi i te tauaro o a^{3}+6a^{2}+11a+6, kimihia te tauaro o ia taurangi.
\frac{-6a^{2}+11a-6-6a^{2}-11a-6}{-4}
Pahekotia te a^{3} me -a^{3}, ka 0.
\frac{-12a^{2}+11a-6-11a-6}{-4}
Pahekotia te -6a^{2} me -6a^{2}, ka -12a^{2}.
\frac{-12a^{2}-6-6}{-4}
Pahekotia te 11a me -11a, ka 0.
\frac{-12a^{2}-12}{-4}
Tangohia te 6 i te -6, ka -12.
\frac{\left(a^{2}-2a-a+2\right)\left(a-3\right)-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o a-1 ki ia tau o a-2.
\frac{\left(a^{2}-3a+2\right)\left(a-3\right)-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}
Pahekotia te -2a me -a, ka -3a.
\frac{a^{3}-3a^{2}-3a^{2}+9a+2a-6-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o a^{2}-3a+2 ki ia tau o a-3.
\frac{a^{3}-6a^{2}+9a+2a-6-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}
Pahekotia te -3a^{2} me -3a^{2}, ka -6a^{2}.
\frac{a^{3}-6a^{2}+11a-6-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}
Pahekotia te 9a me 2a, ka 11a.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{2}+2a+a+2\right)\left(a+3\right)}{-4}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o a+1 ki ia tau o a+2.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{2}+3a+2\right)\left(a+3\right)}{-4}
Pahekotia te 2a me a, ka 3a.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{3}+3a^{2}+3a^{2}+9a+2a+6\right)}{-4}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o a^{2}+3a+2 ki ia tau o a+3.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{3}+6a^{2}+9a+2a+6\right)}{-4}
Pahekotia te 3a^{2} me 3a^{2}, ka 6a^{2}.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{3}+6a^{2}+11a+6\right)}{-4}
Pahekotia te 9a me 2a, ka 11a.
\frac{a^{3}-6a^{2}+11a-6-a^{3}-6a^{2}-11a-6}{-4}
Hei kimi i te tauaro o a^{3}+6a^{2}+11a+6, kimihia te tauaro o ia taurangi.
\frac{-6a^{2}+11a-6-6a^{2}-11a-6}{-4}
Pahekotia te a^{3} me -a^{3}, ka 0.
\frac{-12a^{2}+11a-6-11a-6}{-4}
Pahekotia te -6a^{2} me -6a^{2}, ka -12a^{2}.
\frac{-12a^{2}-6-6}{-4}
Pahekotia te 11a me -11a, ka 0.
\frac{-12a^{2}-12}{-4}
Tangohia te 6 i te -6, ka -12.