Aromātai
\frac{3}{2}=1.5
Tauwehe
\frac{3}{2} = 1\frac{1}{2} = 1.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{9-\left(8-\left(\frac{4}{12}+\frac{3}{12}\right)\times 6\right)}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times 6}
Ko te maha noa iti rawa atu o 3 me 4 ko 12. Me tahuri \frac{1}{3} me \frac{1}{4} ki te hautau me te tautūnga 12.
\frac{9-\left(8-\frac{4+3}{12}\times 6\right)}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times 6}
Tā te mea he rite te tauraro o \frac{4}{12} me \frac{3}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{9-\left(8-\frac{7}{12}\times 6\right)}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times 6}
Tāpirihia te 4 ki te 3, ka 7.
\frac{9-\left(8-\frac{7\times 6}{12}\right)}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times 6}
Tuhia te \frac{7}{12}\times 6 hei hautanga kotahi.
\frac{9-\left(8-\frac{42}{12}\right)}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times 6}
Whakareatia te 7 ki te 6, ka 42.
\frac{9-\left(8-\frac{7}{2}\right)}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times 6}
Whakahekea te hautanga \frac{42}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
\frac{9-\left(\frac{16}{2}-\frac{7}{2}\right)}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times 6}
Me tahuri te 8 ki te hautau \frac{16}{2}.
\frac{9-\frac{16-7}{2}}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times 6}
Tā te mea he rite te tauraro o \frac{16}{2} me \frac{7}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{9-\frac{9}{2}}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times 6}
Tangohia te 7 i te 16, ka 9.
\frac{\frac{18}{2}-\frac{9}{2}}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times 6}
Me tahuri te 9 ki te hautau \frac{18}{2}.
\frac{\frac{18-9}{2}}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times 6}
Tā te mea he rite te tauraro o \frac{18}{2} me \frac{9}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{9}{2}}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times 6}
Tangohia te 9 i te 18, ka 9.
\frac{\frac{9}{2}}{8-\left(\frac{2}{6}+\frac{3}{6}\right)\times 6}
Ko te maha noa iti rawa atu o 3 me 2 ko 6. Me tahuri \frac{1}{3} me \frac{1}{2} ki te hautau me te tautūnga 6.
\frac{\frac{9}{2}}{8-\frac{2+3}{6}\times 6}
Tā te mea he rite te tauraro o \frac{2}{6} me \frac{3}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{9}{2}}{8-\frac{5}{6}\times 6}
Tāpirihia te 2 ki te 3, ka 5.
\frac{\frac{9}{2}}{8-5}
Me whakakore te 6 me te 6.
\frac{\frac{9}{2}}{3}
Tangohia te 5 i te 8, ka 3.
\frac{9}{2\times 3}
Tuhia te \frac{\frac{9}{2}}{3} hei hautanga kotahi.
\frac{9}{6}
Whakareatia te 2 ki te 3, ka 6.
\frac{3}{2}
Whakahekea te hautanga \frac{9}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}