Aromātai
\frac{46}{3}\approx 15.333333333
Tauwehe
\frac{2 \cdot 23}{3} = 15\frac{1}{3} = 15.333333333333334
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{12+1}{4}-\frac{4\times 3+1}{3}-\frac{5}{6}}{\frac{11}{12}-\frac{1}{2}\left(\frac{2\times 3+1}{3}+1-\frac{1\times 4+1}{4}\right)}
Whakareatia te 3 ki te 4, ka 12.
\frac{\frac{13}{4}-\frac{4\times 3+1}{3}-\frac{5}{6}}{\frac{11}{12}-\frac{1}{2}\left(\frac{2\times 3+1}{3}+1-\frac{1\times 4+1}{4}\right)}
Tāpirihia te 12 ki te 1, ka 13.
\frac{\frac{13}{4}-\frac{12+1}{3}-\frac{5}{6}}{\frac{11}{12}-\frac{1}{2}\left(\frac{2\times 3+1}{3}+1-\frac{1\times 4+1}{4}\right)}
Whakareatia te 4 ki te 3, ka 12.
\frac{\frac{13}{4}-\frac{13}{3}-\frac{5}{6}}{\frac{11}{12}-\frac{1}{2}\left(\frac{2\times 3+1}{3}+1-\frac{1\times 4+1}{4}\right)}
Tāpirihia te 12 ki te 1, ka 13.
\frac{\frac{39}{12}-\frac{52}{12}-\frac{5}{6}}{\frac{11}{12}-\frac{1}{2}\left(\frac{2\times 3+1}{3}+1-\frac{1\times 4+1}{4}\right)}
Ko te maha noa iti rawa atu o 4 me 3 ko 12. Me tahuri \frac{13}{4} me \frac{13}{3} ki te hautau me te tautūnga 12.
\frac{\frac{39-52}{12}-\frac{5}{6}}{\frac{11}{12}-\frac{1}{2}\left(\frac{2\times 3+1}{3}+1-\frac{1\times 4+1}{4}\right)}
Tā te mea he rite te tauraro o \frac{39}{12} me \frac{52}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{-\frac{13}{12}-\frac{5}{6}}{\frac{11}{12}-\frac{1}{2}\left(\frac{2\times 3+1}{3}+1-\frac{1\times 4+1}{4}\right)}
Tangohia te 52 i te 39, ka -13.
\frac{-\frac{13}{12}-\frac{10}{12}}{\frac{11}{12}-\frac{1}{2}\left(\frac{2\times 3+1}{3}+1-\frac{1\times 4+1}{4}\right)}
Ko te maha noa iti rawa atu o 12 me 6 ko 12. Me tahuri -\frac{13}{12} me \frac{5}{6} ki te hautau me te tautūnga 12.
\frac{\frac{-13-10}{12}}{\frac{11}{12}-\frac{1}{2}\left(\frac{2\times 3+1}{3}+1-\frac{1\times 4+1}{4}\right)}
Tā te mea he rite te tauraro o -\frac{13}{12} me \frac{10}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{-\frac{23}{12}}{\frac{11}{12}-\frac{1}{2}\left(\frac{2\times 3+1}{3}+1-\frac{1\times 4+1}{4}\right)}
Tangohia te 10 i te -13, ka -23.
\frac{-\frac{23}{12}}{\frac{11}{12}-\frac{1}{2}\left(\frac{6+1}{3}+1-\frac{1\times 4+1}{4}\right)}
Whakareatia te 2 ki te 3, ka 6.
\frac{-\frac{23}{12}}{\frac{11}{12}-\frac{1}{2}\left(\frac{7}{3}+1-\frac{1\times 4+1}{4}\right)}
Tāpirihia te 6 ki te 1, ka 7.
\frac{-\frac{23}{12}}{\frac{11}{12}-\frac{1}{2}\left(\frac{7}{3}+\frac{3}{3}-\frac{1\times 4+1}{4}\right)}
Me tahuri te 1 ki te hautau \frac{3}{3}.
\frac{-\frac{23}{12}}{\frac{11}{12}-\frac{1}{2}\left(\frac{7+3}{3}-\frac{1\times 4+1}{4}\right)}
Tā te mea he rite te tauraro o \frac{7}{3} me \frac{3}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-\frac{23}{12}}{\frac{11}{12}-\frac{1}{2}\left(\frac{10}{3}-\frac{1\times 4+1}{4}\right)}
Tāpirihia te 7 ki te 3, ka 10.
\frac{-\frac{23}{12}}{\frac{11}{12}-\frac{1}{2}\left(\frac{10}{3}-\frac{4+1}{4}\right)}
Whakareatia te 1 ki te 4, ka 4.
\frac{-\frac{23}{12}}{\frac{11}{12}-\frac{1}{2}\left(\frac{10}{3}-\frac{5}{4}\right)}
Tāpirihia te 4 ki te 1, ka 5.
\frac{-\frac{23}{12}}{\frac{11}{12}-\frac{1}{2}\left(\frac{40}{12}-\frac{15}{12}\right)}
Ko te maha noa iti rawa atu o 3 me 4 ko 12. Me tahuri \frac{10}{3} me \frac{5}{4} ki te hautau me te tautūnga 12.
\frac{-\frac{23}{12}}{\frac{11}{12}-\frac{1}{2}\times \frac{40-15}{12}}
Tā te mea he rite te tauraro o \frac{40}{12} me \frac{15}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{-\frac{23}{12}}{\frac{11}{12}-\frac{1}{2}\times \frac{25}{12}}
Tangohia te 15 i te 40, ka 25.
\frac{-\frac{23}{12}}{\frac{11}{12}-\frac{1\times 25}{2\times 12}}
Me whakarea te \frac{1}{2} ki te \frac{25}{12} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-\frac{23}{12}}{\frac{11}{12}-\frac{25}{24}}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 25}{2\times 12}.
\frac{-\frac{23}{12}}{\frac{22}{24}-\frac{25}{24}}
Ko te maha noa iti rawa atu o 12 me 24 ko 24. Me tahuri \frac{11}{12} me \frac{25}{24} ki te hautau me te tautūnga 24.
\frac{-\frac{23}{12}}{\frac{22-25}{24}}
Tā te mea he rite te tauraro o \frac{22}{24} me \frac{25}{24}, me tango rāua mā te tango i ō raua taurunga.
\frac{-\frac{23}{12}}{\frac{-3}{24}}
Tangohia te 25 i te 22, ka -3.
\frac{-\frac{23}{12}}{-\frac{1}{8}}
Whakahekea te hautanga \frac{-3}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
-\frac{23}{12}\left(-8\right)
Whakawehe -\frac{23}{12} ki te -\frac{1}{8} mā te whakarea -\frac{23}{12} ki te tau huripoki o -\frac{1}{8}.
\frac{-23\left(-8\right)}{12}
Tuhia te -\frac{23}{12}\left(-8\right) hei hautanga kotahi.
\frac{184}{12}
Whakareatia te -23 ki te -8, ka 184.
\frac{46}{3}
Whakahekea te hautanga \frac{184}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}