Whakaoti mō m (complex solution)
\left\{\begin{matrix}\\m=\frac{1-n}{3}\text{, }&\text{unconditionally}\\m\in \mathrm{C}\text{, }&n=0\end{matrix}\right.
Whakaoti mō m
\left\{\begin{matrix}\\m=\frac{1-n}{3}\text{, }&\text{unconditionally}\\m\in \mathrm{R}\text{, }&n=0\end{matrix}\right.
Whakaoti mō n
n=1-3m
n=0
Tohaina
Kua tāruatia ki te papatopenga
4m^{2}-4mn+n^{2}+\left(m-2n\right)\left(m+2n\right)-5m\left(m+n\right)=-3n
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2m-n\right)^{2}.
4m^{2}-4mn+n^{2}+m^{2}-\left(2n\right)^{2}-5m\left(m+n\right)=-3n
Whakaarohia te \left(m-2n\right)\left(m+2n\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4m^{2}-4mn+n^{2}+m^{2}-2^{2}n^{2}-5m\left(m+n\right)=-3n
Whakarohaina te \left(2n\right)^{2}.
4m^{2}-4mn+n^{2}+m^{2}-4n^{2}-5m\left(m+n\right)=-3n
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
5m^{2}-4mn+n^{2}-4n^{2}-5m\left(m+n\right)=-3n
Pahekotia te 4m^{2} me m^{2}, ka 5m^{2}.
5m^{2}-4mn-3n^{2}-5m\left(m+n\right)=-3n
Pahekotia te n^{2} me -4n^{2}, ka -3n^{2}.
5m^{2}-4mn-3n^{2}-5m^{2}-5mn=-3n
Whakamahia te āhuatanga tohatoha hei whakarea te -5m ki te m+n.
-4mn-3n^{2}-5mn=-3n
Pahekotia te 5m^{2} me -5m^{2}, ka 0.
-9mn-3n^{2}=-3n
Pahekotia te -4mn me -5mn, ka -9mn.
-9mn=-3n+3n^{2}
Me tāpiri te 3n^{2} ki ngā taha e rua.
\left(-9n\right)m=3n^{2}-3n
He hanga arowhānui tō te whārite.
\frac{\left(-9n\right)m}{-9n}=\frac{3n\left(n-1\right)}{-9n}
Whakawehea ngā taha e rua ki te -9n.
m=\frac{3n\left(n-1\right)}{-9n}
Mā te whakawehe ki te -9n ka wetekia te whakareanga ki te -9n.
m=\frac{1-n}{3}
Whakawehe 3n\left(-1+n\right) ki te -9n.
4m^{2}-4mn+n^{2}+\left(m-2n\right)\left(m+2n\right)-5m\left(m+n\right)=-3n
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2m-n\right)^{2}.
4m^{2}-4mn+n^{2}+m^{2}-\left(2n\right)^{2}-5m\left(m+n\right)=-3n
Whakaarohia te \left(m-2n\right)\left(m+2n\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4m^{2}-4mn+n^{2}+m^{2}-2^{2}n^{2}-5m\left(m+n\right)=-3n
Whakarohaina te \left(2n\right)^{2}.
4m^{2}-4mn+n^{2}+m^{2}-4n^{2}-5m\left(m+n\right)=-3n
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
5m^{2}-4mn+n^{2}-4n^{2}-5m\left(m+n\right)=-3n
Pahekotia te 4m^{2} me m^{2}, ka 5m^{2}.
5m^{2}-4mn-3n^{2}-5m\left(m+n\right)=-3n
Pahekotia te n^{2} me -4n^{2}, ka -3n^{2}.
5m^{2}-4mn-3n^{2}-5m^{2}-5mn=-3n
Whakamahia te āhuatanga tohatoha hei whakarea te -5m ki te m+n.
-4mn-3n^{2}-5mn=-3n
Pahekotia te 5m^{2} me -5m^{2}, ka 0.
-9mn-3n^{2}=-3n
Pahekotia te -4mn me -5mn, ka -9mn.
-9mn=-3n+3n^{2}
Me tāpiri te 3n^{2} ki ngā taha e rua.
\left(-9n\right)m=3n^{2}-3n
He hanga arowhānui tō te whārite.
\frac{\left(-9n\right)m}{-9n}=\frac{3n\left(n-1\right)}{-9n}
Whakawehea ngā taha e rua ki te -9n.
m=\frac{3n\left(n-1\right)}{-9n}
Mā te whakawehe ki te -9n ka wetekia te whakareanga ki te -9n.
m=\frac{1-n}{3}
Whakawehe 3n\left(-1+n\right) ki te -9n.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}