Aromātai
\frac{3547}{192}\approx 18.473958333
Tauwehe
\frac{3547}{2 ^ {6} \cdot 3} = 18\frac{91}{192} = 18.473958333333332
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{7}{4}\left(3-\frac{1}{2}\right)\right)^{2}-\sqrt{\frac{4}{9}}
Tangohia te \frac{1}{4} i te 2, ka \frac{7}{4}.
\left(\frac{7}{4}\times \frac{5}{2}\right)^{2}-\sqrt{\frac{4}{9}}
Tangohia te \frac{1}{2} i te 3, ka \frac{5}{2}.
\left(\frac{35}{8}\right)^{2}-\sqrt{\frac{4}{9}}
Whakareatia te \frac{7}{4} ki te \frac{5}{2}, ka \frac{35}{8}.
\frac{1225}{64}-\sqrt{\frac{4}{9}}
Tātaihia te \frac{35}{8} mā te pū o 2, kia riro ko \frac{1225}{64}.
\frac{1225}{64}-\frac{2}{3}
Tuhia anō te pūtake rua o te whakawehenga \frac{4}{9} hei whakawehenga o ngā pūtake rua \frac{\sqrt{4}}{\sqrt{9}}. Tuhia te pūtakerua o te taurunga me te tauraro.
\frac{3547}{192}
Tangohia te \frac{2}{3} i te \frac{1225}{64}, ka \frac{3547}{192}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}