Aromātai
16
Tauwehe
2^{4}
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
[ ( 14 + 12 : 4 ) - ( 6 \times 4 - 39 ) ] : ( 1 + 1 ) =
Tohaina
Kua tāruatia ki te papatopenga
\frac{14+3-\left(6\times 4-39\right)}{1+1}
Whakawehea te 12 ki te 4, kia riro ko 3.
\frac{17-\left(6\times 4-39\right)}{1+1}
Tāpirihia te 14 ki te 3, ka 17.
\frac{17-\left(24-39\right)}{1+1}
Whakareatia te 6 ki te 4, ka 24.
\frac{17-\left(-15\right)}{1+1}
Tangohia te 39 i te 24, ka -15.
\frac{17+15}{1+1}
Ko te tauaro o -15 ko 15.
\frac{32}{1+1}
Tāpirihia te 17 ki te 15, ka 32.
\frac{32}{2}
Tāpirihia te 1 ki te 1, ka 2.
16
Whakawehea te 32 ki te 2, kia riro ko 16.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}