Aromātai
\frac{13}{5}=2.6
Tauwehe
\frac{13}{5} = 2\frac{3}{5} = 2.6
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{36+4}{10}+2+\frac{3\times 6}{\frac{36}{3}-2}}{3}
Whakareatia te 12 ki te 3, ka 36.
\frac{\frac{40}{10}+2+\frac{3\times 6}{\frac{36}{3}-2}}{3}
Tāpirihia te 36 ki te 4, ka 40.
\frac{4+2+\frac{3\times 6}{\frac{36}{3}-2}}{3}
Whakawehea te 40 ki te 10, kia riro ko 4.
\frac{6+\frac{3\times 6}{\frac{36}{3}-2}}{3}
Tāpirihia te 4 ki te 2, ka 6.
\frac{6+\frac{18}{\frac{36}{3}-2}}{3}
Whakareatia te 3 ki te 6, ka 18.
\frac{6+\frac{18}{12-2}}{3}
Whakawehea te 36 ki te 3, kia riro ko 12.
\frac{6+\frac{18}{10}}{3}
Tangohia te 2 i te 12, ka 10.
\frac{6+\frac{9}{5}}{3}
Whakahekea te hautanga \frac{18}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\frac{30}{5}+\frac{9}{5}}{3}
Me tahuri te 6 ki te hautau \frac{30}{5}.
\frac{\frac{30+9}{5}}{3}
Tā te mea he rite te tauraro o \frac{30}{5} me \frac{9}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{39}{5}}{3}
Tāpirihia te 30 ki te 9, ka 39.
\frac{39}{5\times 3}
Tuhia te \frac{\frac{39}{5}}{3} hei hautanga kotahi.
\frac{39}{15}
Whakareatia te 5 ki te 3, ka 15.
\frac{13}{5}
Whakahekea te hautanga \frac{39}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}