Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\left(-a\right)^{3}\left(x^{2}\right)^{3}\left(y^{3}\right)^{3}\right)^{2}
Whakarohaina te \left(\left(-a\right)x^{2}y^{3}\right)^{3}.
\left(\left(-a\right)^{3}x^{6}\left(y^{3}\right)^{3}\right)^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 3 kia riro ai te 6.
\left(\left(-a\right)^{3}x^{6}y^{9}\right)^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te 3 kia riro ai te 9.
\left(\left(-a\right)^{3}\right)^{2}\left(x^{6}\right)^{2}\left(y^{9}\right)^{2}
Whakarohaina te \left(\left(-a\right)^{3}x^{6}y^{9}\right)^{2}.
\left(-a\right)^{6}\left(x^{6}\right)^{2}\left(y^{9}\right)^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te 2 kia riro ai te 6.
\left(-a\right)^{6}x^{12}\left(y^{9}\right)^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 6 me te 2 kia riro ai te 12.
\left(-a\right)^{6}x^{12}y^{18}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 9 me te 2 kia riro ai te 18.
\left(-1\right)^{6}a^{6}x^{12}y^{18}
Whakarohaina te \left(-a\right)^{6}.
1a^{6}x^{12}y^{18}
Tātaihia te -1 mā te pū o 6, kia riro ko 1.
a^{6}x^{12}y^{18}
Mō tētahi kupu t, t\times 1=t me 1t=t.
\left(\left(-a\right)^{3}\left(x^{2}\right)^{3}\left(y^{3}\right)^{3}\right)^{2}
Whakarohaina te \left(\left(-a\right)x^{2}y^{3}\right)^{3}.
\left(\left(-a\right)^{3}x^{6}\left(y^{3}\right)^{3}\right)^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 3 kia riro ai te 6.
\left(\left(-a\right)^{3}x^{6}y^{9}\right)^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te 3 kia riro ai te 9.
\left(\left(-a\right)^{3}\right)^{2}\left(x^{6}\right)^{2}\left(y^{9}\right)^{2}
Whakarohaina te \left(\left(-a\right)^{3}x^{6}y^{9}\right)^{2}.
\left(-a\right)^{6}\left(x^{6}\right)^{2}\left(y^{9}\right)^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te 2 kia riro ai te 6.
\left(-a\right)^{6}x^{12}\left(y^{9}\right)^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 6 me te 2 kia riro ai te 12.
\left(-a\right)^{6}x^{12}y^{18}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 9 me te 2 kia riro ai te 18.
\left(-1\right)^{6}a^{6}x^{12}y^{18}
Whakarohaina te \left(-a\right)^{6}.
1a^{6}x^{12}y^{18}
Tātaihia te -1 mā te pū o 6, kia riro ko 1.
a^{6}x^{12}y^{18}
Mō tētahi kupu t, t\times 1=t me 1t=t.