Aromātai
\left(25-x^{2}\right)^{2}
Whakaroha
x^{4}-50x^{2}+625
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(-5\left(-x\right)+25+x\left(-x\right)-5x\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te -5+x ki te -x-5.
\left(5x+25+x\left(-x\right)-5x\right)^{2}
Whakareatia te -5 ki te -1, ka 5.
\left(25+x\left(-x\right)\right)^{2}
Pahekotia te 5x me -5x, ka 0.
625+50x\left(-x\right)+x^{2}\left(-x\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(25+x\left(-x\right)\right)^{2}.
625+50x\left(-x\right)+x^{2}x^{2}
Tātaihia te -x mā te pū o 2, kia riro ko x^{2}.
625+50x\left(-x\right)+x^{4}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 2 kia riro ai te 4.
625+50x^{2}\left(-1\right)+x^{4}
Whakareatia te x ki te x, ka x^{2}.
625-50x^{2}+x^{4}
Whakareatia te 50 ki te -1, ka -50.
\left(-5\left(-x\right)+25+x\left(-x\right)-5x\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te -5+x ki te -x-5.
\left(5x+25+x\left(-x\right)-5x\right)^{2}
Whakareatia te -5 ki te -1, ka 5.
\left(25+x\left(-x\right)\right)^{2}
Pahekotia te 5x me -5x, ka 0.
625+50x\left(-x\right)+x^{2}\left(-x\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(25+x\left(-x\right)\right)^{2}.
625+50x\left(-x\right)+x^{2}x^{2}
Tātaihia te -x mā te pū o 2, kia riro ko x^{2}.
625+50x\left(-x\right)+x^{4}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 2 kia riro ai te 4.
625+50x^{2}\left(-1\right)+x^{4}
Whakareatia te x ki te x, ka x^{2}.
625-50x^{2}+x^{4}
Whakareatia te 50 ki te -1, ka -50.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}