Aromātai
\frac{20}{9}\approx 2.222222222
Tauwehe
\frac{2 ^ {2} \cdot 5}{3 ^ {2}} = 2\frac{2}{9} = 2.2222222222222223
Tohaina
Kua tāruatia ki te papatopenga
\frac{-\frac{9+2}{3}}{-\frac{1\times 7+4}{7}}-\frac{1}{9}
Whakareatia te 3 ki te 3, ka 9.
\frac{-\frac{11}{3}}{-\frac{1\times 7+4}{7}}-\frac{1}{9}
Tāpirihia te 9 ki te 2, ka 11.
\frac{-\frac{11}{3}}{-\frac{7+4}{7}}-\frac{1}{9}
Whakareatia te 1 ki te 7, ka 7.
\frac{-\frac{11}{3}}{-\frac{11}{7}}-\frac{1}{9}
Tāpirihia te 7 ki te 4, ka 11.
-\frac{11}{3}\left(-\frac{7}{11}\right)-\frac{1}{9}
Whakawehe -\frac{11}{3} ki te -\frac{11}{7} mā te whakarea -\frac{11}{3} ki te tau huripoki o -\frac{11}{7}.
\frac{-11\left(-7\right)}{3\times 11}-\frac{1}{9}
Me whakarea te -\frac{11}{3} ki te -\frac{7}{11} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{77}{33}-\frac{1}{9}
Mahia ngā whakarea i roto i te hautanga \frac{-11\left(-7\right)}{3\times 11}.
\frac{7}{3}-\frac{1}{9}
Whakahekea te hautanga \frac{77}{33} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 11.
\frac{21}{9}-\frac{1}{9}
Ko te maha noa iti rawa atu o 3 me 9 ko 9. Me tahuri \frac{7}{3} me \frac{1}{9} ki te hautau me te tautūnga 9.
\frac{21-1}{9}
Tā te mea he rite te tauraro o \frac{21}{9} me \frac{1}{9}, me tango rāua mā te tango i ō raua taurunga.
\frac{20}{9}
Tangohia te 1 i te 21, ka 20.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}