Aromātai
-\frac{261}{2}=-130.5
Tauwehe
-\frac{261}{2} = -130\frac{1}{2} = -130.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{-1}{\frac{2}{9}}+2^{200}\times \left(0\times 5\right)^{200}-3^{3}\left(-\frac{3}{2}\right)^{2}}{|\frac{-4}{2}\left(-\frac{1}{2}\right)^{2}|}
Tātaihia te -1 mā te pū o 3, kia riro ko -1.
\frac{-\frac{9}{2}+2^{200}\times \left(0\times 5\right)^{200}-3^{3}\left(-\frac{3}{2}\right)^{2}}{|\frac{-4}{2}\left(-\frac{1}{2}\right)^{2}|}
Whakawehe -1 ki te \frac{2}{9} mā te whakarea -1 ki te tau huripoki o \frac{2}{9}.
\frac{-\frac{9}{2}+1606938044258990275541962092341162602522202993782792835301376\times \left(0\times 5\right)^{200}-3^{3}\left(-\frac{3}{2}\right)^{2}}{|\frac{-4}{2}\left(-\frac{1}{2}\right)^{2}|}
Tātaihia te 2 mā te pū o 200, kia riro ko 1606938044258990275541962092341162602522202993782792835301376.
\frac{-\frac{9}{2}+1606938044258990275541962092341162602522202993782792835301376\times 0^{200}-3^{3}\left(-\frac{3}{2}\right)^{2}}{|\frac{-4}{2}\left(-\frac{1}{2}\right)^{2}|}
Whakareatia te 0 ki te 5, ka 0.
\frac{-\frac{9}{2}+1606938044258990275541962092341162602522202993782792835301376\times 0-3^{3}\left(-\frac{3}{2}\right)^{2}}{|\frac{-4}{2}\left(-\frac{1}{2}\right)^{2}|}
Tātaihia te 0 mā te pū o 200, kia riro ko 0.
\frac{-\frac{9}{2}+0-3^{3}\left(-\frac{3}{2}\right)^{2}}{|\frac{-4}{2}\left(-\frac{1}{2}\right)^{2}|}
Whakareatia te 1606938044258990275541962092341162602522202993782792835301376 ki te 0, ka 0.
\frac{-\frac{9}{2}-3^{3}\left(-\frac{3}{2}\right)^{2}}{|\frac{-4}{2}\left(-\frac{1}{2}\right)^{2}|}
Tāpirihia te -\frac{9}{2} ki te 0, ka -\frac{9}{2}.
\frac{-\frac{9}{2}-27\left(-\frac{3}{2}\right)^{2}}{|\frac{-4}{2}\left(-\frac{1}{2}\right)^{2}|}
Tātaihia te 3 mā te pū o 3, kia riro ko 27.
\frac{-\frac{9}{2}-27\times \frac{9}{4}}{|\frac{-4}{2}\left(-\frac{1}{2}\right)^{2}|}
Tātaihia te -\frac{3}{2} mā te pū o 2, kia riro ko \frac{9}{4}.
\frac{-\frac{9}{2}-\frac{243}{4}}{|\frac{-4}{2}\left(-\frac{1}{2}\right)^{2}|}
Whakareatia te 27 ki te \frac{9}{4}, ka \frac{243}{4}.
\frac{-\frac{261}{4}}{|\frac{-4}{2}\left(-\frac{1}{2}\right)^{2}|}
Tangohia te \frac{243}{4} i te -\frac{9}{2}, ka -\frac{261}{4}.
\frac{-\frac{261}{4}}{|-2\left(-\frac{1}{2}\right)^{2}|}
Whakawehea te -4 ki te 2, kia riro ko -2.
\frac{-\frac{261}{4}}{|-2\times \frac{1}{4}|}
Tātaihia te -\frac{1}{2} mā te pū o 2, kia riro ko \frac{1}{4}.
\frac{-\frac{261}{4}}{|-\frac{1}{2}|}
Whakareatia te -2 ki te \frac{1}{4}, ka -\frac{1}{2}.
\frac{-\frac{261}{4}}{\frac{1}{2}}
Ko te uara pū o tētahi tau tūturu a ko a ina a\geq 0, ko -a rānei ina a<0. Ko te uara pū o -\frac{1}{2} ko \frac{1}{2}.
-\frac{261}{4}\times 2
Whakawehe -\frac{261}{4} ki te \frac{1}{2} mā te whakarea -\frac{261}{4} ki te tau huripoki o \frac{1}{2}.
-\frac{261}{2}
Whakareatia te -\frac{261}{4} ki te 2, ka -\frac{261}{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}