Aromātai
-128.5
Tauwehe
-128.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{-1}{\frac{2}{9}}+2^{200}\left(-0.5\right)^{200}-3^{3}\left(-\frac{3}{2}\right)^{2}}{|\frac{-4}{2}\left(-\frac{1}{2}\right)^{2}|}
Tātaihia te -1 mā te pū o 3, kia riro ko -1.
\frac{-\frac{9}{2}+2^{200}\left(-0.5\right)^{200}-3^{3}\left(-\frac{3}{2}\right)^{2}}{|\frac{-4}{2}\left(-\frac{1}{2}\right)^{2}|}
Whakawehe -1 ki te \frac{2}{9} mā te whakarea -1 ki te tau huripoki o \frac{2}{9}.
\frac{-\frac{9}{2}+1606938044258990275541962092341162602522202993782792835301376\left(-0.5\right)^{200}-3^{3}\left(-\frac{3}{2}\right)^{2}}{|\frac{-4}{2}\left(-\frac{1}{2}\right)^{2}|}
Tātaihia te 2 mā te pū o 200, kia riro ko 1606938044258990275541962092341162602522202993782792835301376.
\frac{-\frac{9}{2}+1606938044258990275541962092341162602522202993782792835301376\times 0.00000000000000000000000000000000000000000000000000000000000062230152778611417071440640537801242405902521687211671331011166147896988340353834411839448231257136169569665895551224821247160434722900390625-3^{3}\left(-\frac{3}{2}\right)^{2}}{|\frac{-4}{2}\left(-\frac{1}{2}\right)^{2}|}
Tātaihia te -0.5 mā te pū o 200, kia riro ko 0.00000000000000000000000000000000000000000000000000000000000062230152778611417071440640537801242405902521687211671331011166147896988340353834411839448231257136169569665895551224821247160434722900390625.
\frac{-\frac{9}{2}+1-3^{3}\left(-\frac{3}{2}\right)^{2}}{|\frac{-4}{2}\left(-\frac{1}{2}\right)^{2}|}
Whakareatia te 1606938044258990275541962092341162602522202993782792835301376 ki te 0.00000000000000000000000000000000000000000000000000000000000062230152778611417071440640537801242405902521687211671331011166147896988340353834411839448231257136169569665895551224821247160434722900390625, ka 1.
\frac{-\frac{9}{2}+\frac{2}{2}-3^{3}\left(-\frac{3}{2}\right)^{2}}{|\frac{-4}{2}\left(-\frac{1}{2}\right)^{2}|}
Me tahuri te 1 ki te hautau \frac{2}{2}.
\frac{\frac{-9+2}{2}-3^{3}\left(-\frac{3}{2}\right)^{2}}{|\frac{-4}{2}\left(-\frac{1}{2}\right)^{2}|}
Tā te mea he rite te tauraro o -\frac{9}{2} me \frac{2}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-\frac{7}{2}-3^{3}\left(-\frac{3}{2}\right)^{2}}{|\frac{-4}{2}\left(-\frac{1}{2}\right)^{2}|}
Tāpirihia te -9 ki te 2, ka -7.
\frac{-\frac{7}{2}-27\left(-\frac{3}{2}\right)^{2}}{|\frac{-4}{2}\left(-\frac{1}{2}\right)^{2}|}
Tātaihia te 3 mā te pū o 3, kia riro ko 27.
\frac{-\frac{7}{2}-27\times \frac{9}{4}}{|\frac{-4}{2}\left(-\frac{1}{2}\right)^{2}|}
Tātaihia te -\frac{3}{2} mā te pū o 2, kia riro ko \frac{9}{4}.
\frac{-\frac{7}{2}-\frac{27\times 9}{4}}{|\frac{-4}{2}\left(-\frac{1}{2}\right)^{2}|}
Tuhia te 27\times \frac{9}{4} hei hautanga kotahi.
\frac{-\frac{7}{2}-\frac{243}{4}}{|\frac{-4}{2}\left(-\frac{1}{2}\right)^{2}|}
Whakareatia te 27 ki te 9, ka 243.
\frac{-\frac{14}{4}-\frac{243}{4}}{|\frac{-4}{2}\left(-\frac{1}{2}\right)^{2}|}
Ko te maha noa iti rawa atu o 2 me 4 ko 4. Me tahuri -\frac{7}{2} me \frac{243}{4} ki te hautau me te tautūnga 4.
\frac{\frac{-14-243}{4}}{|\frac{-4}{2}\left(-\frac{1}{2}\right)^{2}|}
Tā te mea he rite te tauraro o -\frac{14}{4} me \frac{243}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{-\frac{257}{4}}{|\frac{-4}{2}\left(-\frac{1}{2}\right)^{2}|}
Tangohia te 243 i te -14, ka -257.
\frac{-\frac{257}{4}}{|-2\left(-\frac{1}{2}\right)^{2}|}
Whakawehea te -4 ki te 2, kia riro ko -2.
\frac{-\frac{257}{4}}{|-2\times \frac{1}{4}|}
Tātaihia te -\frac{1}{2} mā te pū o 2, kia riro ko \frac{1}{4}.
\frac{-\frac{257}{4}}{|\frac{-2}{4}|}
Whakareatia te -2 ki te \frac{1}{4}, ka \frac{-2}{4}.
\frac{-\frac{257}{4}}{|-\frac{1}{2}|}
Whakahekea te hautanga \frac{-2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{-\frac{257}{4}}{\frac{1}{2}}
Ko te uara pū o tētahi tau tūturu a ko a ina a\geq 0, ko -a rānei ina a<0. Ko te uara pū o -\frac{1}{2} ko \frac{1}{2}.
-\frac{257}{4}\times 2
Whakawehe -\frac{257}{4} ki te \frac{1}{2} mā te whakarea -\frac{257}{4} ki te tau huripoki o \frac{1}{2}.
\frac{-257\times 2}{4}
Tuhia te -\frac{257}{4}\times 2 hei hautanga kotahi.
\frac{-514}{4}
Whakareatia te -257 ki te 2, ka -514.
-\frac{257}{2}
Whakahekea te hautanga \frac{-514}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}