Aromātai
-\frac{9}{16}=-0.5625
Tauwehe
-\frac{9}{16} = -0.5625
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(\frac{4}{25}\times \left(\frac{1}{4}\right)^{2}\right)^{2}}{\left(5^{2}\times 2^{2}\right)^{-2}}-\frac{\left(\frac{4}{5}\right)^{-5}\left(-\frac{4}{5}\right)^{-4}}{\left(\frac{4}{5}\right)^{-7}}
Tātaihia te -\frac{2}{5} mā te pū o 2, kia riro ko \frac{4}{25}.
\frac{\left(\frac{4}{25}\times \frac{1}{16}\right)^{2}}{\left(5^{2}\times 2^{2}\right)^{-2}}-\frac{\left(\frac{4}{5}\right)^{-5}\left(-\frac{4}{5}\right)^{-4}}{\left(\frac{4}{5}\right)^{-7}}
Tātaihia te \frac{1}{4} mā te pū o 2, kia riro ko \frac{1}{16}.
\frac{\left(\frac{1}{100}\right)^{2}}{\left(5^{2}\times 2^{2}\right)^{-2}}-\frac{\left(\frac{4}{5}\right)^{-5}\left(-\frac{4}{5}\right)^{-4}}{\left(\frac{4}{5}\right)^{-7}}
Whakareatia te \frac{4}{25} ki te \frac{1}{16}, ka \frac{1}{100}.
\frac{\frac{1}{10000}}{\left(5^{2}\times 2^{2}\right)^{-2}}-\frac{\left(\frac{4}{5}\right)^{-5}\left(-\frac{4}{5}\right)^{-4}}{\left(\frac{4}{5}\right)^{-7}}
Tātaihia te \frac{1}{100} mā te pū o 2, kia riro ko \frac{1}{10000}.
\frac{\frac{1}{10000}}{\left(25\times 2^{2}\right)^{-2}}-\frac{\left(\frac{4}{5}\right)^{-5}\left(-\frac{4}{5}\right)^{-4}}{\left(\frac{4}{5}\right)^{-7}}
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
\frac{\frac{1}{10000}}{\left(25\times 4\right)^{-2}}-\frac{\left(\frac{4}{5}\right)^{-5}\left(-\frac{4}{5}\right)^{-4}}{\left(\frac{4}{5}\right)^{-7}}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{\frac{1}{10000}}{100^{-2}}-\frac{\left(\frac{4}{5}\right)^{-5}\left(-\frac{4}{5}\right)^{-4}}{\left(\frac{4}{5}\right)^{-7}}
Whakareatia te 25 ki te 4, ka 100.
\frac{\frac{1}{10000}}{\frac{1}{10000}}-\frac{\left(\frac{4}{5}\right)^{-5}\left(-\frac{4}{5}\right)^{-4}}{\left(\frac{4}{5}\right)^{-7}}
Tātaihia te 100 mā te pū o -2, kia riro ko \frac{1}{10000}.
1-\frac{\left(\frac{4}{5}\right)^{-5}\left(-\frac{4}{5}\right)^{-4}}{\left(\frac{4}{5}\right)^{-7}}
Whakawehea te \frac{1}{10000} ki te \frac{1}{10000}, kia riro ko 1.
1-\left(-\frac{4}{5}\right)^{-4}\times \left(\frac{4}{5}\right)^{2}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
1-\frac{625}{256}\times \left(\frac{4}{5}\right)^{2}
Tātaihia te -\frac{4}{5} mā te pū o -4, kia riro ko \frac{625}{256}.
1-\frac{625}{256}\times \frac{16}{25}
Tātaihia te \frac{4}{5} mā te pū o 2, kia riro ko \frac{16}{25}.
1-\frac{25}{16}
Whakareatia te \frac{625}{256} ki te \frac{16}{25}, ka \frac{25}{16}.
-\frac{9}{16}
Tangohia te \frac{25}{16} i te 1, ka -\frac{9}{16}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}