Aromātai
-7
Tauwehe
-7
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(-\frac{2}{3}\right)^{6}}{\frac{\left(-\frac{2}{3}\right)^{11}}{\left(-\frac{2}{3}\right)^{5}}}+\left(\frac{\left(-\frac{1}{2}\right)^{6}\left(-\frac{1}{2}\right)^{5}}{\left(\left(-\frac{1}{2}\right)^{4}\right)^{2}}\right)^{-1}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te 2 kia riro ai te 6.
\frac{\left(-\frac{2}{3}\right)^{6}}{\left(-\frac{2}{3}\right)^{6}}+\left(\frac{\left(-\frac{1}{2}\right)^{6}\left(-\frac{1}{2}\right)^{5}}{\left(\left(-\frac{1}{2}\right)^{4}\right)^{2}}\right)^{-1}
Hei whakawehe ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga. Me tango te 5 i te 11 kia riro ai te 6.
1+\left(\frac{\left(-\frac{1}{2}\right)^{6}\left(-\frac{1}{2}\right)^{5}}{\left(\left(-\frac{1}{2}\right)^{4}\right)^{2}}\right)^{-1}
Whakawehea te \left(-\frac{2}{3}\right)^{6} ki te \left(-\frac{2}{3}\right)^{6}, kia riro ko 1.
1+\left(\frac{\left(-\frac{1}{2}\right)^{11}}{\left(\left(-\frac{1}{2}\right)^{4}\right)^{2}}\right)^{-1}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 6 me te 5 kia riro ai te 11.
1+\left(\frac{\left(-\frac{1}{2}\right)^{11}}{\left(-\frac{1}{2}\right)^{8}}\right)^{-1}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 4 me te 2 kia riro ai te 8.
1+\left(\left(-\frac{1}{2}\right)^{3}\right)^{-1}
Hei whakawehe ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga. Me tango te 8 i te 11 kia riro ai te 3.
1+\left(-\frac{1}{2}\right)^{-3}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te -1 kia riro ai te -3.
1-8
Tātaihia te -\frac{1}{2} mā te pū o -3, kia riro ko -8.
-7
Tangohia te 8 i te 1, ka -7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}