Aromātai
-\frac{13}{3}\approx -4.333333333
Tauwehe
-\frac{13}{3} = -4\frac{1}{3} = -4.333333333333333
Tohaina
Kua tāruatia ki te papatopenga
3-2\times \left(\frac{1}{2}\right)^{2}-\frac{3}{4}\left(\sqrt{2}\right)^{2}-4\times \left(\frac{2}{\sqrt{3}}\right)^{2}
Ko te pūrua o \sqrt{3} ko 3.
3-2\times \frac{1}{4}-\frac{3}{4}\left(\sqrt{2}\right)^{2}-4\times \left(\frac{2}{\sqrt{3}}\right)^{2}
Tātaihia te \frac{1}{2} mā te pū o 2, kia riro ko \frac{1}{4}.
3-\frac{1}{2}-\frac{3}{4}\left(\sqrt{2}\right)^{2}-4\times \left(\frac{2}{\sqrt{3}}\right)^{2}
Whakareatia te 2 ki te \frac{1}{4}, ka \frac{1}{2}.
\frac{5}{2}-\frac{3}{4}\left(\sqrt{2}\right)^{2}-4\times \left(\frac{2}{\sqrt{3}}\right)^{2}
Tangohia te \frac{1}{2} i te 3, ka \frac{5}{2}.
\frac{5}{2}-\frac{3}{4}\times 2-4\times \left(\frac{2}{\sqrt{3}}\right)^{2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{5}{2}-\frac{3}{2}-4\times \left(\frac{2}{\sqrt{3}}\right)^{2}
Whakareatia te \frac{3}{4} ki te 2, ka \frac{3}{2}.
1-4\times \left(\frac{2}{\sqrt{3}}\right)^{2}
Tangohia te \frac{3}{2} i te \frac{5}{2}, ka 1.
1-4\times \left(\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)^{2}
Whakangāwaritia te tauraro o \frac{2}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
1-4\times \left(\frac{2\sqrt{3}}{3}\right)^{2}
Ko te pūrua o \sqrt{3} ko 3.
1-4\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}
Kia whakarewa i te \frac{2\sqrt{3}}{3} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
1-\frac{4\times \left(2\sqrt{3}\right)^{2}}{3^{2}}
Tuhia te 4\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}} hei hautanga kotahi.
1-\frac{4\times 2^{2}\left(\sqrt{3}\right)^{2}}{3^{2}}
Whakarohaina te \left(2\sqrt{3}\right)^{2}.
1-\frac{4\times 4\left(\sqrt{3}\right)^{2}}{3^{2}}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
1-\frac{4\times 4\times 3}{3^{2}}
Ko te pūrua o \sqrt{3} ko 3.
1-\frac{4\times 12}{3^{2}}
Whakareatia te 4 ki te 3, ka 12.
1-\frac{48}{3^{2}}
Whakareatia te 4 ki te 12, ka 48.
1-\frac{48}{9}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
1-\frac{16}{3}
Whakahekea te hautanga \frac{48}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
-\frac{13}{3}
Tangohia te \frac{16}{3} i te 1, ka -\frac{13}{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}