Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\times \left(\frac{2}{\sqrt{3}}\right)^{2}\left(\left(\frac{1}{2}\right)^{2}+4\times 1^{2}-2^{2}\right)
Ko te pūrua o \sqrt{2} ko 2.
2\times \left(\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)^{2}\left(\left(\frac{1}{2}\right)^{2}+4\times 1^{2}-2^{2}\right)
Whakangāwaritia te tauraro o \frac{2}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
2\times \left(\frac{2\sqrt{3}}{3}\right)^{2}\left(\left(\frac{1}{2}\right)^{2}+4\times 1^{2}-2^{2}\right)
Ko te pūrua o \sqrt{3} ko 3.
2\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}\left(\left(\frac{1}{2}\right)^{2}+4\times 1^{2}-2^{2}\right)
Kia whakarewa i te \frac{2\sqrt{3}}{3} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
2\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}\left(\frac{1}{4}+4\times 1^{2}-2^{2}\right)
Tātaihia te \frac{1}{2} mā te pū o 2, kia riro ko \frac{1}{4}.
2\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}\left(\frac{1}{4}+4\times 1-2^{2}\right)
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
2\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}\left(\frac{1}{4}+4-2^{2}\right)
Whakareatia te 4 ki te 1, ka 4.
2\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}\left(\frac{17}{4}-2^{2}\right)
Tāpirihia te \frac{1}{4} ki te 4, ka \frac{17}{4}.
2\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}\left(\frac{17}{4}-4\right)
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
2\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}\times \frac{1}{4}
Tangohia te 4 i te \frac{17}{4}, ka \frac{1}{4}.
\frac{1}{2}\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}
Whakareatia te 2 ki te \frac{1}{4}, ka \frac{1}{2}.
\frac{1}{2}\times \frac{2^{2}\left(\sqrt{3}\right)^{2}}{3^{2}}
Whakarohaina te \left(2\sqrt{3}\right)^{2}.
\frac{1}{2}\times \frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{1}{2}\times \frac{4\times 3}{3^{2}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{1}{2}\times \frac{12}{3^{2}}
Whakareatia te 4 ki te 3, ka 12.
\frac{1}{2}\times \frac{12}{9}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\frac{1}{2}\times \frac{4}{3}
Whakahekea te hautanga \frac{12}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{2}{3}
Whakareatia te \frac{1}{2} ki te \frac{4}{3}, ka \frac{2}{3}.