Aromātai
\frac{2}{3}\approx 0.666666667
Tauwehe
\frac{2}{3} = 0.6666666666666666
Tohaina
Kua tāruatia ki te papatopenga
2\times \left(\frac{2}{\sqrt{3}}\right)^{2}\left(\left(\frac{1}{2}\right)^{2}+4\times 1^{2}-2^{2}\right)
Ko te pūrua o \sqrt{2} ko 2.
2\times \left(\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)^{2}\left(\left(\frac{1}{2}\right)^{2}+4\times 1^{2}-2^{2}\right)
Whakangāwaritia te tauraro o \frac{2}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
2\times \left(\frac{2\sqrt{3}}{3}\right)^{2}\left(\left(\frac{1}{2}\right)^{2}+4\times 1^{2}-2^{2}\right)
Ko te pūrua o \sqrt{3} ko 3.
2\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}\left(\left(\frac{1}{2}\right)^{2}+4\times 1^{2}-2^{2}\right)
Kia whakarewa i te \frac{2\sqrt{3}}{3} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
2\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}\left(\frac{1}{4}+4\times 1^{2}-2^{2}\right)
Tātaihia te \frac{1}{2} mā te pū o 2, kia riro ko \frac{1}{4}.
2\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}\left(\frac{1}{4}+4\times 1-2^{2}\right)
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
2\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}\left(\frac{1}{4}+4-2^{2}\right)
Whakareatia te 4 ki te 1, ka 4.
2\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}\left(\frac{17}{4}-2^{2}\right)
Tāpirihia te \frac{1}{4} ki te 4, ka \frac{17}{4}.
2\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}\left(\frac{17}{4}-4\right)
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
2\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}\times \frac{1}{4}
Tangohia te 4 i te \frac{17}{4}, ka \frac{1}{4}.
\frac{1}{2}\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}
Whakareatia te 2 ki te \frac{1}{4}, ka \frac{1}{2}.
\frac{1}{2}\times \frac{2^{2}\left(\sqrt{3}\right)^{2}}{3^{2}}
Whakarohaina te \left(2\sqrt{3}\right)^{2}.
\frac{1}{2}\times \frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{1}{2}\times \frac{4\times 3}{3^{2}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{1}{2}\times \frac{12}{3^{2}}
Whakareatia te 4 ki te 3, ka 12.
\frac{1}{2}\times \frac{12}{9}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\frac{1}{2}\times \frac{4}{3}
Whakahekea te hautanga \frac{12}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{2}{3}
Whakareatia te \frac{1}{2} ki te \frac{4}{3}, ka \frac{2}{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}