Aromātai
-\frac{7}{24}\approx -0.291666667
Tauwehe
-\frac{7}{24} = -0.2916666666666667
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{10}{12}-\frac{3}{12}}{\frac{1\times 3+1}{3}}\left(-\frac{2}{3}\right)
Ko te maha noa iti rawa atu o 6 me 4 ko 12. Me tahuri \frac{5}{6} me \frac{1}{4} ki te hautau me te tautūnga 12.
\frac{\frac{10-3}{12}}{\frac{1\times 3+1}{3}}\left(-\frac{2}{3}\right)
Tā te mea he rite te tauraro o \frac{10}{12} me \frac{3}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{7}{12}}{\frac{1\times 3+1}{3}}\left(-\frac{2}{3}\right)
Tangohia te 3 i te 10, ka 7.
\frac{\frac{7}{12}}{\frac{3+1}{3}}\left(-\frac{2}{3}\right)
Whakareatia te 1 ki te 3, ka 3.
\frac{\frac{7}{12}}{\frac{4}{3}}\left(-\frac{2}{3}\right)
Tāpirihia te 3 ki te 1, ka 4.
\frac{7}{12}\times \frac{3}{4}\left(-\frac{2}{3}\right)
Whakawehe \frac{7}{12} ki te \frac{4}{3} mā te whakarea \frac{7}{12} ki te tau huripoki o \frac{4}{3}.
\frac{7\times 3}{12\times 4}\left(-\frac{2}{3}\right)
Me whakarea te \frac{7}{12} ki te \frac{3}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{21}{48}\left(-\frac{2}{3}\right)
Mahia ngā whakarea i roto i te hautanga \frac{7\times 3}{12\times 4}.
\frac{7}{16}\left(-\frac{2}{3}\right)
Whakahekea te hautanga \frac{21}{48} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{7\left(-2\right)}{16\times 3}
Me whakarea te \frac{7}{16} ki te -\frac{2}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-14}{48}
Mahia ngā whakarea i roto i te hautanga \frac{7\left(-2\right)}{16\times 3}.
-\frac{7}{24}
Whakahekea te hautanga \frac{-14}{48} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}