Aromātai
\frac{3xy^{6}}{5}
Whakaroha
\frac{3xy^{6}}{5}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(\frac{\left(\frac{3}{5}\right)^{2}x^{2}y^{2}}{\frac{3}{5}x}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Whakarohaina te \left(\frac{3}{5}xy\right)^{2}.
\frac{\left(\frac{\frac{9}{25}x^{2}y^{2}}{\frac{3}{5}x}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Tātaihia te \frac{3}{5} mā te pū o 2, kia riro ko \frac{9}{25}.
\frac{\left(\frac{\frac{9}{25}xy^{2}}{\frac{3}{5}}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{\left(\frac{\frac{9}{25}xy^{2}\times 5}{3}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Whakawehe \frac{9}{25}xy^{2} ki te \frac{3}{5} mā te whakarea \frac{9}{25}xy^{2} ki te tau huripoki o \frac{3}{5}.
\frac{\left(\frac{\frac{9}{5}xy^{2}}{3}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Whakareatia te \frac{9}{25} ki te 5, ka \frac{9}{5}.
\frac{\left(\frac{3}{5}xy^{2}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Whakawehea te \frac{9}{5}xy^{2} ki te 3, kia riro ko \frac{3}{5}xy^{2}.
\frac{\left(\frac{3}{5}\right)^{3}x^{3}\left(y^{2}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Whakarohaina te \left(\frac{3}{5}xy^{2}\right)^{3}.
\frac{\left(\frac{3}{5}\right)^{3}x^{3}y^{6}}{\left(\frac{3}{5}x\right)^{2}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 3 kia riro ai te 6.
\frac{\frac{27}{125}x^{3}y^{6}}{\left(\frac{3}{5}x\right)^{2}}
Tātaihia te \frac{3}{5} mā te pū o 3, kia riro ko \frac{27}{125}.
\frac{\frac{27}{125}x^{3}y^{6}}{\left(\frac{3}{5}\right)^{2}x^{2}}
Whakarohaina te \left(\frac{3}{5}x\right)^{2}.
\frac{\frac{27}{125}x^{3}y^{6}}{\frac{9}{25}x^{2}}
Tātaihia te \frac{3}{5} mā te pū o 2, kia riro ko \frac{9}{25}.
\frac{\frac{27}{125}xy^{6}}{\frac{9}{25}}
Me whakakore tahi te x^{2} i te taurunga me te tauraro.
\frac{\frac{27}{125}xy^{6}\times 25}{9}
Whakawehe \frac{27}{125}xy^{6} ki te \frac{9}{25} mā te whakarea \frac{27}{125}xy^{6} ki te tau huripoki o \frac{9}{25}.
\frac{\frac{27}{5}xy^{6}}{9}
Whakareatia te \frac{27}{125} ki te 25, ka \frac{27}{5}.
\frac{3}{5}xy^{6}
Whakawehea te \frac{27}{5}xy^{6} ki te 9, kia riro ko \frac{3}{5}xy^{6}.
\frac{\left(\frac{\left(\frac{3}{5}\right)^{2}x^{2}y^{2}}{\frac{3}{5}x}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Whakarohaina te \left(\frac{3}{5}xy\right)^{2}.
\frac{\left(\frac{\frac{9}{25}x^{2}y^{2}}{\frac{3}{5}x}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Tātaihia te \frac{3}{5} mā te pū o 2, kia riro ko \frac{9}{25}.
\frac{\left(\frac{\frac{9}{25}xy^{2}}{\frac{3}{5}}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{\left(\frac{\frac{9}{25}xy^{2}\times 5}{3}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Whakawehe \frac{9}{25}xy^{2} ki te \frac{3}{5} mā te whakarea \frac{9}{25}xy^{2} ki te tau huripoki o \frac{3}{5}.
\frac{\left(\frac{\frac{9}{5}xy^{2}}{3}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Whakareatia te \frac{9}{25} ki te 5, ka \frac{9}{5}.
\frac{\left(\frac{3}{5}xy^{2}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Whakawehea te \frac{9}{5}xy^{2} ki te 3, kia riro ko \frac{3}{5}xy^{2}.
\frac{\left(\frac{3}{5}\right)^{3}x^{3}\left(y^{2}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Whakarohaina te \left(\frac{3}{5}xy^{2}\right)^{3}.
\frac{\left(\frac{3}{5}\right)^{3}x^{3}y^{6}}{\left(\frac{3}{5}x\right)^{2}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 3 kia riro ai te 6.
\frac{\frac{27}{125}x^{3}y^{6}}{\left(\frac{3}{5}x\right)^{2}}
Tātaihia te \frac{3}{5} mā te pū o 3, kia riro ko \frac{27}{125}.
\frac{\frac{27}{125}x^{3}y^{6}}{\left(\frac{3}{5}\right)^{2}x^{2}}
Whakarohaina te \left(\frac{3}{5}x\right)^{2}.
\frac{\frac{27}{125}x^{3}y^{6}}{\frac{9}{25}x^{2}}
Tātaihia te \frac{3}{5} mā te pū o 2, kia riro ko \frac{9}{25}.
\frac{\frac{27}{125}xy^{6}}{\frac{9}{25}}
Me whakakore tahi te x^{2} i te taurunga me te tauraro.
\frac{\frac{27}{125}xy^{6}\times 25}{9}
Whakawehe \frac{27}{125}xy^{6} ki te \frac{9}{25} mā te whakarea \frac{27}{125}xy^{6} ki te tau huripoki o \frac{9}{25}.
\frac{\frac{27}{5}xy^{6}}{9}
Whakareatia te \frac{27}{125} ki te 25, ka \frac{27}{5}.
\frac{3}{5}xy^{6}
Whakawehea te \frac{27}{5}xy^{6} ki te 9, kia riro ko \frac{3}{5}xy^{6}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}