Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(\frac{\left(\frac{3}{5}\right)^{2}x^{2}y^{2}}{\frac{3}{5}x}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Whakarohaina te \left(\frac{3}{5}xy\right)^{2}.
\frac{\left(\frac{\frac{9}{25}x^{2}y^{2}}{\frac{3}{5}x}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Tātaihia te \frac{3}{5} mā te pū o 2, kia riro ko \frac{9}{25}.
\frac{\left(\frac{\frac{9}{25}xy^{2}}{\frac{3}{5}}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{\left(\frac{\frac{9}{25}xy^{2}\times 5}{3}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Whakawehe \frac{9}{25}xy^{2} ki te \frac{3}{5} mā te whakarea \frac{9}{25}xy^{2} ki te tau huripoki o \frac{3}{5}.
\frac{\left(\frac{\frac{9}{5}xy^{2}}{3}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Whakareatia te \frac{9}{25} ki te 5, ka \frac{9}{5}.
\frac{\left(\frac{3}{5}xy^{2}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Whakawehea te \frac{9}{5}xy^{2} ki te 3, kia riro ko \frac{3}{5}xy^{2}.
\frac{\left(\frac{3}{5}\right)^{3}x^{3}\left(y^{2}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Whakarohaina te \left(\frac{3}{5}xy^{2}\right)^{3}.
\frac{\left(\frac{3}{5}\right)^{3}x^{3}y^{6}}{\left(\frac{3}{5}x\right)^{2}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 3 kia riro ai te 6.
\frac{\frac{27}{125}x^{3}y^{6}}{\left(\frac{3}{5}x\right)^{2}}
Tātaihia te \frac{3}{5} mā te pū o 3, kia riro ko \frac{27}{125}.
\frac{\frac{27}{125}x^{3}y^{6}}{\left(\frac{3}{5}\right)^{2}x^{2}}
Whakarohaina te \left(\frac{3}{5}x\right)^{2}.
\frac{\frac{27}{125}x^{3}y^{6}}{\frac{9}{25}x^{2}}
Tātaihia te \frac{3}{5} mā te pū o 2, kia riro ko \frac{9}{25}.
\frac{\frac{27}{125}xy^{6}}{\frac{9}{25}}
Me whakakore tahi te x^{2} i te taurunga me te tauraro.
\frac{\frac{27}{125}xy^{6}\times 25}{9}
Whakawehe \frac{27}{125}xy^{6} ki te \frac{9}{25} mā te whakarea \frac{27}{125}xy^{6} ki te tau huripoki o \frac{9}{25}.
\frac{\frac{27}{5}xy^{6}}{9}
Whakareatia te \frac{27}{125} ki te 25, ka \frac{27}{5}.
\frac{3}{5}xy^{6}
Whakawehea te \frac{27}{5}xy^{6} ki te 9, kia riro ko \frac{3}{5}xy^{6}.
\frac{\left(\frac{\left(\frac{3}{5}\right)^{2}x^{2}y^{2}}{\frac{3}{5}x}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Whakarohaina te \left(\frac{3}{5}xy\right)^{2}.
\frac{\left(\frac{\frac{9}{25}x^{2}y^{2}}{\frac{3}{5}x}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Tātaihia te \frac{3}{5} mā te pū o 2, kia riro ko \frac{9}{25}.
\frac{\left(\frac{\frac{9}{25}xy^{2}}{\frac{3}{5}}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{\left(\frac{\frac{9}{25}xy^{2}\times 5}{3}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Whakawehe \frac{9}{25}xy^{2} ki te \frac{3}{5} mā te whakarea \frac{9}{25}xy^{2} ki te tau huripoki o \frac{3}{5}.
\frac{\left(\frac{\frac{9}{5}xy^{2}}{3}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Whakareatia te \frac{9}{25} ki te 5, ka \frac{9}{5}.
\frac{\left(\frac{3}{5}xy^{2}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Whakawehea te \frac{9}{5}xy^{2} ki te 3, kia riro ko \frac{3}{5}xy^{2}.
\frac{\left(\frac{3}{5}\right)^{3}x^{3}\left(y^{2}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Whakarohaina te \left(\frac{3}{5}xy^{2}\right)^{3}.
\frac{\left(\frac{3}{5}\right)^{3}x^{3}y^{6}}{\left(\frac{3}{5}x\right)^{2}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 3 kia riro ai te 6.
\frac{\frac{27}{125}x^{3}y^{6}}{\left(\frac{3}{5}x\right)^{2}}
Tātaihia te \frac{3}{5} mā te pū o 3, kia riro ko \frac{27}{125}.
\frac{\frac{27}{125}x^{3}y^{6}}{\left(\frac{3}{5}\right)^{2}x^{2}}
Whakarohaina te \left(\frac{3}{5}x\right)^{2}.
\frac{\frac{27}{125}x^{3}y^{6}}{\frac{9}{25}x^{2}}
Tātaihia te \frac{3}{5} mā te pū o 2, kia riro ko \frac{9}{25}.
\frac{\frac{27}{125}xy^{6}}{\frac{9}{25}}
Me whakakore tahi te x^{2} i te taurunga me te tauraro.
\frac{\frac{27}{125}xy^{6}\times 25}{9}
Whakawehe \frac{27}{125}xy^{6} ki te \frac{9}{25} mā te whakarea \frac{27}{125}xy^{6} ki te tau huripoki o \frac{9}{25}.
\frac{\frac{27}{5}xy^{6}}{9}
Whakareatia te \frac{27}{125} ki te 25, ka \frac{27}{5}.
\frac{3}{5}xy^{6}
Whakawehea te \frac{27}{5}xy^{6} ki te 9, kia riro ko \frac{3}{5}xy^{6}.