Aromātai
-\frac{171}{40}=-4.275
Tauwehe
-\frac{171}{40} = -4\frac{11}{40} = -4.275
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{\frac{3}{4}-\frac{2}{4}}{\frac{4}{3}}+1}{-\frac{3}{4}+\frac{1}{3}}\times \frac{3}{2}
Ko te maha noa iti rawa atu o 4 me 2 ko 4. Me tahuri \frac{3}{4} me \frac{1}{2} ki te hautau me te tautūnga 4.
\frac{\frac{\frac{3-2}{4}}{\frac{4}{3}}+1}{-\frac{3}{4}+\frac{1}{3}}\times \frac{3}{2}
Tā te mea he rite te tauraro o \frac{3}{4} me \frac{2}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{\frac{1}{4}}{\frac{4}{3}}+1}{-\frac{3}{4}+\frac{1}{3}}\times \frac{3}{2}
Tangohia te 2 i te 3, ka 1.
\frac{\frac{1}{4}\times \frac{3}{4}+1}{-\frac{3}{4}+\frac{1}{3}}\times \frac{3}{2}
Whakawehe \frac{1}{4} ki te \frac{4}{3} mā te whakarea \frac{1}{4} ki te tau huripoki o \frac{4}{3}.
\frac{\frac{1\times 3}{4\times 4}+1}{-\frac{3}{4}+\frac{1}{3}}\times \frac{3}{2}
Me whakarea te \frac{1}{4} ki te \frac{3}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{3}{16}+1}{-\frac{3}{4}+\frac{1}{3}}\times \frac{3}{2}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 3}{4\times 4}.
\frac{\frac{3}{16}+\frac{16}{16}}{-\frac{3}{4}+\frac{1}{3}}\times \frac{3}{2}
Me tahuri te 1 ki te hautau \frac{16}{16}.
\frac{\frac{3+16}{16}}{-\frac{3}{4}+\frac{1}{3}}\times \frac{3}{2}
Tā te mea he rite te tauraro o \frac{3}{16} me \frac{16}{16}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{19}{16}}{-\frac{3}{4}+\frac{1}{3}}\times \frac{3}{2}
Tāpirihia te 3 ki te 16, ka 19.
\frac{\frac{19}{16}}{-\frac{9}{12}+\frac{4}{12}}\times \frac{3}{2}
Ko te maha noa iti rawa atu o 4 me 3 ko 12. Me tahuri -\frac{3}{4} me \frac{1}{3} ki te hautau me te tautūnga 12.
\frac{\frac{19}{16}}{\frac{-9+4}{12}}\times \frac{3}{2}
Tā te mea he rite te tauraro o -\frac{9}{12} me \frac{4}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{19}{16}}{-\frac{5}{12}}\times \frac{3}{2}
Tāpirihia te -9 ki te 4, ka -5.
\frac{19}{16}\left(-\frac{12}{5}\right)\times \frac{3}{2}
Whakawehe \frac{19}{16} ki te -\frac{5}{12} mā te whakarea \frac{19}{16} ki te tau huripoki o -\frac{5}{12}.
\frac{19\left(-12\right)}{16\times 5}\times \frac{3}{2}
Me whakarea te \frac{19}{16} ki te -\frac{12}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-228}{80}\times \frac{3}{2}
Mahia ngā whakarea i roto i te hautanga \frac{19\left(-12\right)}{16\times 5}.
-\frac{57}{20}\times \frac{3}{2}
Whakahekea te hautanga \frac{-228}{80} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{-57\times 3}{20\times 2}
Me whakarea te -\frac{57}{20} ki te \frac{3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-171}{40}
Mahia ngā whakarea i roto i te hautanga \frac{-57\times 3}{20\times 2}.
-\frac{171}{40}
Ka taea te hautanga \frac{-171}{40} te tuhi anō ko -\frac{171}{40} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}