Aromātai
-\frac{1}{16}=-0.0625
Tauwehe
-\frac{1}{16} = -0.0625
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(\left(\frac{2}{3}\right)^{2}\left(-\frac{2}{3}\right)^{7}\right)^{2}}{\left(-\left(-\frac{2}{3}\right)^{5}\right)^{3}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 3 me te 4 kia riro ai te 7.
\frac{\left(\frac{4}{9}\left(-\frac{2}{3}\right)^{7}\right)^{2}}{\left(-\left(-\frac{2}{3}\right)^{5}\right)^{3}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Tātaihia te \frac{2}{3} mā te pū o 2, kia riro ko \frac{4}{9}.
\frac{\left(\frac{4}{9}\left(-\frac{128}{2187}\right)\right)^{2}}{\left(-\left(-\frac{2}{3}\right)^{5}\right)^{3}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Tātaihia te -\frac{2}{3} mā te pū o 7, kia riro ko -\frac{128}{2187}.
\frac{\left(-\frac{512}{19683}\right)^{2}}{\left(-\left(-\frac{2}{3}\right)^{5}\right)^{3}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Whakareatia te \frac{4}{9} ki te -\frac{128}{2187}, ka -\frac{512}{19683}.
\frac{\frac{262144}{387420489}}{\left(-\left(-\frac{2}{3}\right)^{5}\right)^{3}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Tātaihia te -\frac{512}{19683} mā te pū o 2, kia riro ko \frac{262144}{387420489}.
\frac{\frac{262144}{387420489}}{\left(-\left(-\frac{32}{243}\right)\right)^{3}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Tātaihia te -\frac{2}{3} mā te pū o 5, kia riro ko -\frac{32}{243}.
\frac{\frac{262144}{387420489}}{\left(\frac{32}{243}\right)^{3}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Ko te tauaro o -\frac{32}{243} ko \frac{32}{243}.
\frac{\frac{262144}{387420489}}{\frac{32768}{14348907}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Tātaihia te \frac{32}{243} mā te pū o 3, kia riro ko \frac{32768}{14348907}.
\frac{262144}{387420489}\times \frac{14348907}{32768}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Whakawehe \frac{262144}{387420489} ki te \frac{32768}{14348907} mā te whakarea \frac{262144}{387420489} ki te tau huripoki o \frac{32768}{14348907}.
\frac{8}{27}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Whakareatia te \frac{262144}{387420489} ki te \frac{14348907}{32768}, ka \frac{8}{27}.
\frac{8}{27}-\frac{8}{27}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Tātaihia te -\frac{2}{3} mā te pū o 3, kia riro ko -\frac{8}{27}.
0-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Tangohia te \frac{8}{27} i te \frac{8}{27}, ka 0.
0-\frac{16}{2401}\left(-\frac{7}{4}\right)^{4}
Tātaihia te \frac{2}{7} mā te pū o 4, kia riro ko \frac{16}{2401}.
0-\frac{16}{2401}\times \frac{2401}{256}
Tātaihia te -\frac{7}{4} mā te pū o 4, kia riro ko \frac{2401}{256}.
0-\frac{1}{16}
Whakareatia te \frac{16}{2401} ki te \frac{2401}{256}, ka \frac{1}{16}.
-\frac{1}{16}
Tangohia te \frac{1}{16} i te 0, ka -\frac{1}{16}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}