Aromātai
\frac{1}{2}=0.5
Tauwehe
\frac{1}{2} = 0.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(\frac{1}{16}+\left(\frac{1}{2}\right)^{2}-\left(\frac{1}{4}\right)^{2}\times 3\right)^{2}}{\left(\frac{1}{2}\right)^{2}}+\frac{3}{16}+\left(\frac{1}{2}\right)^{2}
Tātaihia te \frac{1}{2} mā te pū o 4, kia riro ko \frac{1}{16}.
\frac{\left(\frac{1}{16}+\frac{1}{4}-\left(\frac{1}{4}\right)^{2}\times 3\right)^{2}}{\left(\frac{1}{2}\right)^{2}}+\frac{3}{16}+\left(\frac{1}{2}\right)^{2}
Tātaihia te \frac{1}{2} mā te pū o 2, kia riro ko \frac{1}{4}.
\frac{\left(\frac{5}{16}-\left(\frac{1}{4}\right)^{2}\times 3\right)^{2}}{\left(\frac{1}{2}\right)^{2}}+\frac{3}{16}+\left(\frac{1}{2}\right)^{2}
Tāpirihia te \frac{1}{16} ki te \frac{1}{4}, ka \frac{5}{16}.
\frac{\left(\frac{5}{16}-\frac{1}{16}\times 3\right)^{2}}{\left(\frac{1}{2}\right)^{2}}+\frac{3}{16}+\left(\frac{1}{2}\right)^{2}
Tātaihia te \frac{1}{4} mā te pū o 2, kia riro ko \frac{1}{16}.
\frac{\left(\frac{5}{16}-\frac{3}{16}\right)^{2}}{\left(\frac{1}{2}\right)^{2}}+\frac{3}{16}+\left(\frac{1}{2}\right)^{2}
Whakareatia te \frac{1}{16} ki te 3, ka \frac{3}{16}.
\frac{\left(\frac{1}{8}\right)^{2}}{\left(\frac{1}{2}\right)^{2}}+\frac{3}{16}+\left(\frac{1}{2}\right)^{2}
Tangohia te \frac{3}{16} i te \frac{5}{16}, ka \frac{1}{8}.
\frac{\frac{1}{64}}{\left(\frac{1}{2}\right)^{2}}+\frac{3}{16}+\left(\frac{1}{2}\right)^{2}
Tātaihia te \frac{1}{8} mā te pū o 2, kia riro ko \frac{1}{64}.
\frac{\frac{1}{64}}{\frac{1}{4}}+\frac{3}{16}+\left(\frac{1}{2}\right)^{2}
Tātaihia te \frac{1}{2} mā te pū o 2, kia riro ko \frac{1}{4}.
\frac{1}{64}\times 4+\frac{3}{16}+\left(\frac{1}{2}\right)^{2}
Whakawehe \frac{1}{64} ki te \frac{1}{4} mā te whakarea \frac{1}{64} ki te tau huripoki o \frac{1}{4}.
\frac{1}{16}+\frac{3}{16}+\left(\frac{1}{2}\right)^{2}
Whakareatia te \frac{1}{64} ki te 4, ka \frac{1}{16}.
\frac{1}{4}+\left(\frac{1}{2}\right)^{2}
Tāpirihia te \frac{1}{16} ki te \frac{3}{16}, ka \frac{1}{4}.
\frac{1}{4}+\frac{1}{4}
Tātaihia te \frac{1}{2} mā te pū o 2, kia riro ko \frac{1}{4}.
\frac{1}{2}
Tāpirihia te \frac{1}{4} ki te \frac{1}{4}, ka \frac{1}{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}