Aromātai
-\frac{\sqrt{3}}{2}+\frac{29}{16}\approx 0.946474596
Tauwehe
\frac{29 - 8 \sqrt{3}}{16} = 0.9464745962155614
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{16}+\left(\frac{1}{2}\right)^{2}-3\left(\left(\frac{1}{\sqrt{2}}\right)^{2}-1\right)-\frac{\sqrt{3}}{2}
Tātaihia te \frac{1}{2} mā te pū o 4, kia riro ko \frac{1}{16}.
\frac{1}{16}+\frac{1}{4}-3\left(\left(\frac{1}{\sqrt{2}}\right)^{2}-1\right)-\frac{\sqrt{3}}{2}
Tātaihia te \frac{1}{2} mā te pū o 2, kia riro ko \frac{1}{4}.
\frac{5}{16}-3\left(\left(\frac{1}{\sqrt{2}}\right)^{2}-1\right)-\frac{\sqrt{3}}{2}
Tāpirihia te \frac{1}{16} ki te \frac{1}{4}, ka \frac{5}{16}.
\frac{5}{16}-3\left(\left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}-1\right)-\frac{\sqrt{3}}{2}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{5}{16}-3\left(\left(\frac{\sqrt{2}}{2}\right)^{2}-1\right)-\frac{\sqrt{3}}{2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{5}{16}-3\left(\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}-1\right)-\frac{\sqrt{3}}{2}
Kia whakarewa i te \frac{\sqrt{2}}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{5}{16}-3\left(\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}-\frac{2^{2}}{2^{2}}\right)-\frac{\sqrt{3}}{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{2^{2}}{2^{2}}.
\frac{5}{16}-3\times \frac{\left(\sqrt{2}\right)^{2}-2^{2}}{2^{2}}-\frac{\sqrt{3}}{2}
Tā te mea he rite te tauraro o \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} me \frac{2^{2}}{2^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{5}{16}-\frac{3\left(\left(\sqrt{2}\right)^{2}-2^{2}\right)}{2^{2}}-\frac{\sqrt{3}}{2}
Tuhia te 3\times \frac{\left(\sqrt{2}\right)^{2}-2^{2}}{2^{2}} hei hautanga kotahi.
\frac{5}{16}-\frac{3\left(2-2^{2}\right)}{2^{2}}-\frac{\sqrt{3}}{2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{5}{16}-\frac{3\left(2-4\right)}{2^{2}}-\frac{\sqrt{3}}{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{5}{16}-\frac{3\left(-2\right)}{2^{2}}-\frac{\sqrt{3}}{2}
Tangohia te 4 i te 2, ka -2.
\frac{5}{16}-\frac{-6}{2^{2}}-\frac{\sqrt{3}}{2}
Whakareatia te 3 ki te -2, ka -6.
\frac{5}{16}-\frac{-6}{4}-\frac{\sqrt{3}}{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{5}{16}-\left(-\frac{3}{2}\right)-\frac{\sqrt{3}}{2}
Whakahekea te hautanga \frac{-6}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{5}{16}+\frac{3}{2}-\frac{\sqrt{3}}{2}
Ko te tauaro o -\frac{3}{2} ko \frac{3}{2}.
\frac{29}{16}-\frac{\sqrt{3}}{2}
Tāpirihia te \frac{5}{16} ki te \frac{3}{2}, ka \frac{29}{16}.
\frac{29}{16}-\frac{8\sqrt{3}}{16}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 16 me 2 ko 16. Whakareatia \frac{\sqrt{3}}{2} ki te \frac{8}{8}.
\frac{29-8\sqrt{3}}{16}
Tā te mea he rite te tauraro o \frac{29}{16} me \frac{8\sqrt{3}}{16}, me tango rāua mā te tango i ō raua taurunga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}