Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{x}{x+1}+\frac{x+1}{x+1}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{x+1}{x+1}.
\frac{x+x+1}{x+1}
Tā te mea he rite te tauraro o \frac{x}{x+1} me \frac{x+1}{x+1}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2x+1}{x+1}
Whakakotahitia ngā kupu rite i x+x+1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{x+1}+\frac{x+1}{x+1})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{x+1}{x+1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+x+1}{x+1})
Tā te mea he rite te tauraro o \frac{x}{x+1} me \frac{x+1}{x+1}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+1}{x+1})
Whakakotahitia ngā kupu rite i x+x+1.
\frac{\left(x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1}+1)-\left(2x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+1)}{\left(x^{1}+1\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(x^{1}+1\right)\times 2x^{1-1}-\left(2x^{1}+1\right)x^{1-1}}{\left(x^{1}+1\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(x^{1}+1\right)\times 2x^{0}-\left(2x^{1}+1\right)x^{0}}{\left(x^{1}+1\right)^{2}}
Mahia ngā tātaitanga.
\frac{x^{1}\times 2x^{0}+2x^{0}-\left(2x^{1}x^{0}+x^{0}\right)}{\left(x^{1}+1\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{2x^{1}+2x^{0}-\left(2x^{1}+x^{0}\right)}{\left(x^{1}+1\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{2x^{1}+2x^{0}-2x^{1}-x^{0}}{\left(x^{1}+1\right)^{2}}
Tangohia ngā taiapa kāore i te hiahiatia.
\frac{\left(2-2\right)x^{1}+\left(2-1\right)x^{0}}{\left(x^{1}+1\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{x^{0}}{\left(x^{1}+1\right)^{2}}
Tangohia te 2 i 2 me te 1 i te 2.
\frac{x^{0}}{\left(x+1\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{1}{\left(x+1\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.