Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

0\times 0\times 0\times 1t^{4}-\frac{1}{3}\times 0\times 0\times 1t^{3}-\frac{1}{2}\times 0\times 3t^{2}+4t
Whakareatia te \frac{3}{4} ki te 0, ka 0.
0\times 0\times 1t^{4}-\frac{1}{3}\times 0\times 0\times 1t^{3}-\frac{1}{2}\times 0\times 3t^{2}+4t
Whakareatia te 0 ki te 0, ka 0.
0\times 1t^{4}-\frac{1}{3}\times 0\times 0\times 1t^{3}-\frac{1}{2}\times 0\times 3t^{2}+4t
Whakareatia te 0 ki te 0, ka 0.
0t^{4}-\frac{1}{3}\times 0\times 0\times 1t^{3}-\frac{1}{2}\times 0\times 3t^{2}+4t
Whakareatia te 0 ki te 1, ka 0.
0-\frac{1}{3}\times 0\times 0\times 1t^{3}-\frac{1}{2}\times 0\times 3t^{2}+4t
Ko te tau i whakarea ki te kore ka hua ko te kore.
0-0\times 0\times 1t^{3}-\frac{1}{2}\times 0\times 3t^{2}+4t
Whakareatia te \frac{1}{3} ki te 0, ka 0.
0-0\times 1t^{3}-\frac{1}{2}\times 0\times 3t^{2}+4t
Whakareatia te 0 ki te 0, ka 0.
0-0t^{3}-\frac{1}{2}\times 0\times 3t^{2}+4t
Whakareatia te 0 ki te 1, ka 0.
0-0-\frac{1}{2}\times 0\times 3t^{2}+4t
Ko te tau i whakarea ki te kore ka hua ko te kore.
0-\frac{1}{2}\times 0\times 3t^{2}+4t
Mā te tango i te 0 i a ia ake anō ka toe ko te 0.
0-0\times 3t^{2}+4t
Whakareatia te \frac{1}{2} ki te 0, ka 0.
0-0t^{2}+4t
Whakareatia te 0 ki te 3, ka 0.
0-0+4t
Ko te tau i whakarea ki te kore ka hua ko te kore.
0+4t
Mā te tango i te 0 i a ia ake anō ka toe ko te 0.
4t
Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{\mathrm{d}}{\mathrm{d}t}(0\times 0\times 0\times 1t^{4}-\frac{1}{3}\times 0\times 0\times 1t^{3}-\frac{1}{2}\times 0\times 3t^{2}+4t)
Whakareatia te \frac{3}{4} ki te 0, ka 0.
\frac{\mathrm{d}}{\mathrm{d}t}(0\times 0\times 1t^{4}-\frac{1}{3}\times 0\times 0\times 1t^{3}-\frac{1}{2}\times 0\times 3t^{2}+4t)
Whakareatia te 0 ki te 0, ka 0.
\frac{\mathrm{d}}{\mathrm{d}t}(0\times 1t^{4}-\frac{1}{3}\times 0\times 0\times 1t^{3}-\frac{1}{2}\times 0\times 3t^{2}+4t)
Whakareatia te 0 ki te 0, ka 0.
\frac{\mathrm{d}}{\mathrm{d}t}(0t^{4}-\frac{1}{3}\times 0\times 0\times 1t^{3}-\frac{1}{2}\times 0\times 3t^{2}+4t)
Whakareatia te 0 ki te 1, ka 0.
\frac{\mathrm{d}}{\mathrm{d}t}(0-\frac{1}{3}\times 0\times 0\times 1t^{3}-\frac{1}{2}\times 0\times 3t^{2}+4t)
Ko te tau i whakarea ki te kore ka hua ko te kore.
\frac{\mathrm{d}}{\mathrm{d}t}(0-0\times 0\times 1t^{3}-\frac{1}{2}\times 0\times 3t^{2}+4t)
Whakareatia te \frac{1}{3} ki te 0, ka 0.
\frac{\mathrm{d}}{\mathrm{d}t}(0-0\times 1t^{3}-\frac{1}{2}\times 0\times 3t^{2}+4t)
Whakareatia te 0 ki te 0, ka 0.
\frac{\mathrm{d}}{\mathrm{d}t}(0-0t^{3}-\frac{1}{2}\times 0\times 3t^{2}+4t)
Whakareatia te 0 ki te 1, ka 0.
\frac{\mathrm{d}}{\mathrm{d}t}(0-0-\frac{1}{2}\times 0\times 3t^{2}+4t)
Ko te tau i whakarea ki te kore ka hua ko te kore.
\frac{\mathrm{d}}{\mathrm{d}t}(0-\frac{1}{2}\times 0\times 3t^{2}+4t)
Mā te tango i te 0 i a ia ake anō ka toe ko te 0.
\frac{\mathrm{d}}{\mathrm{d}t}(0-0\times 3t^{2}+4t)
Whakareatia te \frac{1}{2} ki te 0, ka 0.
\frac{\mathrm{d}}{\mathrm{d}t}(0-0t^{2}+4t)
Whakareatia te 0 ki te 3, ka 0.
\frac{\mathrm{d}}{\mathrm{d}t}(0-0+4t)
Ko te tau i whakarea ki te kore ka hua ko te kore.
\frac{\mathrm{d}}{\mathrm{d}t}(0+4t)
Mā te tango i te 0 i a ia ake anō ka toe ko te 0.
\frac{\mathrm{d}}{\mathrm{d}t}(4t)
Ko te tau i tāpiria he kore ka hua koia tonu.
4t^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
4t^{0}
Tango 1 mai i 1.
4\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
4
Mō tētahi kupu t, t\times 1=t me 1t=t.