Aromātai
4t
Kimi Pārōnaki e ai ki t
4
Tohaina
Kua tāruatia ki te papatopenga
0\times 0\times 0\times 1t^{4}-\frac{1}{3}\times 0\times 0\times 1t^{3}-\frac{1}{2}\times 0\times 3t^{2}+4t
Whakareatia te \frac{3}{4} ki te 0, ka 0.
0\times 0\times 1t^{4}-\frac{1}{3}\times 0\times 0\times 1t^{3}-\frac{1}{2}\times 0\times 3t^{2}+4t
Whakareatia te 0 ki te 0, ka 0.
0\times 1t^{4}-\frac{1}{3}\times 0\times 0\times 1t^{3}-\frac{1}{2}\times 0\times 3t^{2}+4t
Whakareatia te 0 ki te 0, ka 0.
0t^{4}-\frac{1}{3}\times 0\times 0\times 1t^{3}-\frac{1}{2}\times 0\times 3t^{2}+4t
Whakareatia te 0 ki te 1, ka 0.
0-\frac{1}{3}\times 0\times 0\times 1t^{3}-\frac{1}{2}\times 0\times 3t^{2}+4t
Ko te tau i whakarea ki te kore ka hua ko te kore.
0-0\times 0\times 1t^{3}-\frac{1}{2}\times 0\times 3t^{2}+4t
Whakareatia te \frac{1}{3} ki te 0, ka 0.
0-0\times 1t^{3}-\frac{1}{2}\times 0\times 3t^{2}+4t
Whakareatia te 0 ki te 0, ka 0.
0-0t^{3}-\frac{1}{2}\times 0\times 3t^{2}+4t
Whakareatia te 0 ki te 1, ka 0.
0-0-\frac{1}{2}\times 0\times 3t^{2}+4t
Ko te tau i whakarea ki te kore ka hua ko te kore.
0-\frac{1}{2}\times 0\times 3t^{2}+4t
Mā te tango i te 0 i a ia ake anō ka toe ko te 0.
0-0\times 3t^{2}+4t
Whakareatia te \frac{1}{2} ki te 0, ka 0.
0-0t^{2}+4t
Whakareatia te 0 ki te 3, ka 0.
0-0+4t
Ko te tau i whakarea ki te kore ka hua ko te kore.
0+4t
Mā te tango i te 0 i a ia ake anō ka toe ko te 0.
4t
Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{\mathrm{d}}{\mathrm{d}t}(0\times 0\times 0\times 1t^{4}-\frac{1}{3}\times 0\times 0\times 1t^{3}-\frac{1}{2}\times 0\times 3t^{2}+4t)
Whakareatia te \frac{3}{4} ki te 0, ka 0.
\frac{\mathrm{d}}{\mathrm{d}t}(0\times 0\times 1t^{4}-\frac{1}{3}\times 0\times 0\times 1t^{3}-\frac{1}{2}\times 0\times 3t^{2}+4t)
Whakareatia te 0 ki te 0, ka 0.
\frac{\mathrm{d}}{\mathrm{d}t}(0\times 1t^{4}-\frac{1}{3}\times 0\times 0\times 1t^{3}-\frac{1}{2}\times 0\times 3t^{2}+4t)
Whakareatia te 0 ki te 0, ka 0.
\frac{\mathrm{d}}{\mathrm{d}t}(0t^{4}-\frac{1}{3}\times 0\times 0\times 1t^{3}-\frac{1}{2}\times 0\times 3t^{2}+4t)
Whakareatia te 0 ki te 1, ka 0.
\frac{\mathrm{d}}{\mathrm{d}t}(0-\frac{1}{3}\times 0\times 0\times 1t^{3}-\frac{1}{2}\times 0\times 3t^{2}+4t)
Ko te tau i whakarea ki te kore ka hua ko te kore.
\frac{\mathrm{d}}{\mathrm{d}t}(0-0\times 0\times 1t^{3}-\frac{1}{2}\times 0\times 3t^{2}+4t)
Whakareatia te \frac{1}{3} ki te 0, ka 0.
\frac{\mathrm{d}}{\mathrm{d}t}(0-0\times 1t^{3}-\frac{1}{2}\times 0\times 3t^{2}+4t)
Whakareatia te 0 ki te 0, ka 0.
\frac{\mathrm{d}}{\mathrm{d}t}(0-0t^{3}-\frac{1}{2}\times 0\times 3t^{2}+4t)
Whakareatia te 0 ki te 1, ka 0.
\frac{\mathrm{d}}{\mathrm{d}t}(0-0-\frac{1}{2}\times 0\times 3t^{2}+4t)
Ko te tau i whakarea ki te kore ka hua ko te kore.
\frac{\mathrm{d}}{\mathrm{d}t}(0-\frac{1}{2}\times 0\times 3t^{2}+4t)
Mā te tango i te 0 i a ia ake anō ka toe ko te 0.
\frac{\mathrm{d}}{\mathrm{d}t}(0-0\times 3t^{2}+4t)
Whakareatia te \frac{1}{2} ki te 0, ka 0.
\frac{\mathrm{d}}{\mathrm{d}t}(0-0t^{2}+4t)
Whakareatia te 0 ki te 3, ka 0.
\frac{\mathrm{d}}{\mathrm{d}t}(0-0+4t)
Ko te tau i whakarea ki te kore ka hua ko te kore.
\frac{\mathrm{d}}{\mathrm{d}t}(0+4t)
Mā te tango i te 0 i a ia ake anō ka toe ko te 0.
\frac{\mathrm{d}}{\mathrm{d}t}(4t)
Ko te tau i tāpiria he kore ka hua koia tonu.
4t^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
4t^{0}
Tango 1 mai i 1.
4\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
4
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}