Aromātai
\frac{15}{14}\approx 1.071428571
Tauwehe
\frac{3 \cdot 5}{2 \cdot 7} = 1\frac{1}{14} = 1.0714285714285714
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{3}{2}+\frac{1}{\frac{6}{3}+\frac{1}{3}}}{\frac{1}{\frac{3}{5}}+\frac{\frac{2}{5}}{3}}
Me tahuri te 2 ki te hautau \frac{6}{3}.
\frac{\frac{3}{2}+\frac{1}{\frac{6+1}{3}}}{\frac{1}{\frac{3}{5}}+\frac{\frac{2}{5}}{3}}
Tā te mea he rite te tauraro o \frac{6}{3} me \frac{1}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{3}{2}+\frac{1}{\frac{7}{3}}}{\frac{1}{\frac{3}{5}}+\frac{\frac{2}{5}}{3}}
Tāpirihia te 6 ki te 1, ka 7.
\frac{\frac{3}{2}+1\times \frac{3}{7}}{\frac{1}{\frac{3}{5}}+\frac{\frac{2}{5}}{3}}
Whakawehe 1 ki te \frac{7}{3} mā te whakarea 1 ki te tau huripoki o \frac{7}{3}.
\frac{\frac{3}{2}+\frac{3}{7}}{\frac{1}{\frac{3}{5}}+\frac{\frac{2}{5}}{3}}
Whakareatia te 1 ki te \frac{3}{7}, ka \frac{3}{7}.
\frac{\frac{21}{14}+\frac{6}{14}}{\frac{1}{\frac{3}{5}}+\frac{\frac{2}{5}}{3}}
Ko te maha noa iti rawa atu o 2 me 7 ko 14. Me tahuri \frac{3}{2} me \frac{3}{7} ki te hautau me te tautūnga 14.
\frac{\frac{21+6}{14}}{\frac{1}{\frac{3}{5}}+\frac{\frac{2}{5}}{3}}
Tā te mea he rite te tauraro o \frac{21}{14} me \frac{6}{14}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{27}{14}}{\frac{1}{\frac{3}{5}}+\frac{\frac{2}{5}}{3}}
Tāpirihia te 21 ki te 6, ka 27.
\frac{\frac{27}{14}}{1\times \frac{5}{3}+\frac{\frac{2}{5}}{3}}
Whakawehe 1 ki te \frac{3}{5} mā te whakarea 1 ki te tau huripoki o \frac{3}{5}.
\frac{\frac{27}{14}}{\frac{5}{3}+\frac{\frac{2}{5}}{3}}
Whakareatia te 1 ki te \frac{5}{3}, ka \frac{5}{3}.
\frac{\frac{27}{14}}{\frac{5}{3}+\frac{2}{5\times 3}}
Tuhia te \frac{\frac{2}{5}}{3} hei hautanga kotahi.
\frac{\frac{27}{14}}{\frac{5}{3}+\frac{2}{15}}
Whakareatia te 5 ki te 3, ka 15.
\frac{\frac{27}{14}}{\frac{25}{15}+\frac{2}{15}}
Ko te maha noa iti rawa atu o 3 me 15 ko 15. Me tahuri \frac{5}{3} me \frac{2}{15} ki te hautau me te tautūnga 15.
\frac{\frac{27}{14}}{\frac{25+2}{15}}
Tā te mea he rite te tauraro o \frac{25}{15} me \frac{2}{15}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{27}{14}}{\frac{27}{15}}
Tāpirihia te 25 ki te 2, ka 27.
\frac{\frac{27}{14}}{\frac{9}{5}}
Whakahekea te hautanga \frac{27}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{27}{14}\times \frac{5}{9}
Whakawehe \frac{27}{14} ki te \frac{9}{5} mā te whakarea \frac{27}{14} ki te tau huripoki o \frac{9}{5}.
\frac{27\times 5}{14\times 9}
Me whakarea te \frac{27}{14} ki te \frac{5}{9} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{135}{126}
Mahia ngā whakarea i roto i te hautanga \frac{27\times 5}{14\times 9}.
\frac{15}{14}
Whakahekea te hautanga \frac{135}{126} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 9.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}