Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\times \left(\frac{2}{3}\left(x-3\right)\right)^{2}=16\left(7-x\right)
Whakareatia ngā taha e rua o te whārite ki te 2.
2\left(\frac{2}{3}x-2\right)^{2}=16\left(7-x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{2}{3} ki te x-3.
2\left(\frac{4}{9}x^{2}-\frac{8}{3}x+4\right)=16\left(7-x\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\frac{2}{3}x-2\right)^{2}.
\frac{8}{9}x^{2}-\frac{16}{3}x+8=16\left(7-x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te \frac{4}{9}x^{2}-\frac{8}{3}x+4.
\frac{8}{9}x^{2}-\frac{16}{3}x+8=112-16x
Whakamahia te āhuatanga tohatoha hei whakarea te 16 ki te 7-x.
\frac{8}{9}x^{2}-\frac{16}{3}x+8-112=-16x
Tangohia te 112 mai i ngā taha e rua.
\frac{8}{9}x^{2}-\frac{16}{3}x-104=-16x
Tangohia te 112 i te 8, ka -104.
\frac{8}{9}x^{2}-\frac{16}{3}x-104+16x=0
Me tāpiri te 16x ki ngā taha e rua.
\frac{8}{9}x^{2}+\frac{32}{3}x-104=0
Pahekotia te -\frac{16}{3}x me 16x, ka \frac{32}{3}x.
x=\frac{-\frac{32}{3}±\sqrt{\left(\frac{32}{3}\right)^{2}-4\times \frac{8}{9}\left(-104\right)}}{2\times \frac{8}{9}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{8}{9} mō a, \frac{32}{3} mō b, me -104 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{32}{3}±\sqrt{\frac{1024}{9}-4\times \frac{8}{9}\left(-104\right)}}{2\times \frac{8}{9}}
Pūruatia \frac{32}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-\frac{32}{3}±\sqrt{\frac{1024}{9}-\frac{32}{9}\left(-104\right)}}{2\times \frac{8}{9}}
Whakareatia -4 ki te \frac{8}{9}.
x=\frac{-\frac{32}{3}±\sqrt{\frac{1024+3328}{9}}}{2\times \frac{8}{9}}
Whakareatia -\frac{32}{9} ki te -104.
x=\frac{-\frac{32}{3}±\sqrt{\frac{4352}{9}}}{2\times \frac{8}{9}}
Tāpiri \frac{1024}{9} ki te \frac{3328}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{-\frac{32}{3}±\frac{16\sqrt{17}}{3}}{2\times \frac{8}{9}}
Tuhia te pūtakerua o te \frac{4352}{9}.
x=\frac{-\frac{32}{3}±\frac{16\sqrt{17}}{3}}{\frac{16}{9}}
Whakareatia 2 ki te \frac{8}{9}.
x=\frac{16\sqrt{17}-32}{\frac{16}{9}\times 3}
Nā, me whakaoti te whārite x=\frac{-\frac{32}{3}±\frac{16\sqrt{17}}{3}}{\frac{16}{9}} ina he tāpiri te ±. Tāpiri -\frac{32}{3} ki te \frac{16\sqrt{17}}{3}.
x=3\sqrt{17}-6
Whakawehe \frac{-32+16\sqrt{17}}{3} ki te \frac{16}{9} mā te whakarea \frac{-32+16\sqrt{17}}{3} ki te tau huripoki o \frac{16}{9}.
x=\frac{-16\sqrt{17}-32}{\frac{16}{9}\times 3}
Nā, me whakaoti te whārite x=\frac{-\frac{32}{3}±\frac{16\sqrt{17}}{3}}{\frac{16}{9}} ina he tango te ±. Tango \frac{16\sqrt{17}}{3} mai i -\frac{32}{3}.
x=-3\sqrt{17}-6
Whakawehe \frac{-32-16\sqrt{17}}{3} ki te \frac{16}{9} mā te whakarea \frac{-32-16\sqrt{17}}{3} ki te tau huripoki o \frac{16}{9}.
x=3\sqrt{17}-6 x=-3\sqrt{17}-6
Kua oti te whārite te whakatau.
2\times \left(\frac{2}{3}\left(x-3\right)\right)^{2}=16\left(7-x\right)
Whakareatia ngā taha e rua o te whārite ki te 2.
2\left(\frac{2}{3}x-2\right)^{2}=16\left(7-x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{2}{3} ki te x-3.
2\left(\frac{4}{9}x^{2}-\frac{8}{3}x+4\right)=16\left(7-x\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\frac{2}{3}x-2\right)^{2}.
\frac{8}{9}x^{2}-\frac{16}{3}x+8=16\left(7-x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te \frac{4}{9}x^{2}-\frac{8}{3}x+4.
\frac{8}{9}x^{2}-\frac{16}{3}x+8=112-16x
Whakamahia te āhuatanga tohatoha hei whakarea te 16 ki te 7-x.
\frac{8}{9}x^{2}-\frac{16}{3}x+8+16x=112
Me tāpiri te 16x ki ngā taha e rua.
\frac{8}{9}x^{2}+\frac{32}{3}x+8=112
Pahekotia te -\frac{16}{3}x me 16x, ka \frac{32}{3}x.
\frac{8}{9}x^{2}+\frac{32}{3}x=112-8
Tangohia te 8 mai i ngā taha e rua.
\frac{8}{9}x^{2}+\frac{32}{3}x=104
Tangohia te 8 i te 112, ka 104.
\frac{\frac{8}{9}x^{2}+\frac{32}{3}x}{\frac{8}{9}}=\frac{104}{\frac{8}{9}}
Whakawehea ngā taha e rua o te whārite ki te \frac{8}{9}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x^{2}+\frac{\frac{32}{3}}{\frac{8}{9}}x=\frac{104}{\frac{8}{9}}
Mā te whakawehe ki te \frac{8}{9} ka wetekia te whakareanga ki te \frac{8}{9}.
x^{2}+12x=\frac{104}{\frac{8}{9}}
Whakawehe \frac{32}{3} ki te \frac{8}{9} mā te whakarea \frac{32}{3} ki te tau huripoki o \frac{8}{9}.
x^{2}+12x=117
Whakawehe 104 ki te \frac{8}{9} mā te whakarea 104 ki te tau huripoki o \frac{8}{9}.
x^{2}+12x+6^{2}=117+6^{2}
Whakawehea te 12, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 6. Nā, tāpiria te pūrua o te 6 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+12x+36=117+36
Pūrua 6.
x^{2}+12x+36=153
Tāpiri 117 ki te 36.
\left(x+6\right)^{2}=153
Tauwehea x^{2}+12x+36. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+6\right)^{2}}=\sqrt{153}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+6=3\sqrt{17} x+6=-3\sqrt{17}
Whakarūnātia.
x=3\sqrt{17}-6 x=-3\sqrt{17}-6
Me tango 6 mai i ngā taha e rua o te whārite.