Aromātai
\frac{1}{2}=0.5
Tauwehe
\frac{1}{2} = 0.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{2}{3\left(-4\right)}-\frac{1}{4}\times 0\times 4}{\left(\frac{1}{3}\right)^{2}}-\left(-2\right)
Tuhia te \frac{\frac{2}{3}}{-4} hei hautanga kotahi.
\frac{\frac{2}{-12}-\frac{1}{4}\times 0\times 4}{\left(\frac{1}{3}\right)^{2}}-\left(-2\right)
Whakareatia te 3 ki te -4, ka -12.
\frac{-\frac{1}{6}-\frac{1}{4}\times 0\times 4}{\left(\frac{1}{3}\right)^{2}}-\left(-2\right)
Whakahekea te hautanga \frac{2}{-12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{-\frac{1}{6}-0\times 4}{\left(\frac{1}{3}\right)^{2}}-\left(-2\right)
Whakareatia te \frac{1}{4} ki te 0, ka 0.
\frac{-\frac{1}{6}-0}{\left(\frac{1}{3}\right)^{2}}-\left(-2\right)
Whakareatia te 0 ki te 4, ka 0.
\frac{-\frac{1}{6}}{\left(\frac{1}{3}\right)^{2}}-\left(-2\right)
Tangohia te 0 i te -\frac{1}{6}, ka -\frac{1}{6}.
\frac{-\frac{1}{6}}{\frac{1}{9}}-\left(-2\right)
Tātaihia te \frac{1}{3} mā te pū o 2, kia riro ko \frac{1}{9}.
-\frac{1}{6}\times 9-\left(-2\right)
Whakawehe -\frac{1}{6} ki te \frac{1}{9} mā te whakarea -\frac{1}{6} ki te tau huripoki o \frac{1}{9}.
\frac{-9}{6}-\left(-2\right)
Tuhia te -\frac{1}{6}\times 9 hei hautanga kotahi.
-\frac{3}{2}-\left(-2\right)
Whakahekea te hautanga \frac{-9}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
-\frac{3}{2}+2
Ko te tauaro o -2 ko 2.
-\frac{3}{2}+\frac{4}{2}
Me tahuri te 2 ki te hautau \frac{4}{2}.
\frac{-3+4}{2}
Tā te mea he rite te tauraro o -\frac{3}{2} me \frac{4}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{2}
Tāpirihia te -3 ki te 4, ka 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}