Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\frac{1}{2}\sqrt{5}+\frac{1}{2}\sqrt{3}\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{2} ki te \sqrt{5}+\sqrt{3}.
\frac{1}{4}\left(\sqrt{5}\right)^{2}+\frac{1}{2}\sqrt{5}\sqrt{3}+\frac{1}{4}\left(\sqrt{3}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\frac{1}{2}\sqrt{5}+\frac{1}{2}\sqrt{3}\right)^{2}.
\frac{1}{4}\times 5+\frac{1}{2}\sqrt{5}\sqrt{3}+\frac{1}{4}\left(\sqrt{3}\right)^{2}
Ko te pūrua o \sqrt{5} ko 5.
\frac{5}{4}+\frac{1}{2}\sqrt{5}\sqrt{3}+\frac{1}{4}\left(\sqrt{3}\right)^{2}
Whakareatia te \frac{1}{4} ki te 5, ka \frac{5}{4}.
\frac{5}{4}+\frac{1}{2}\sqrt{15}+\frac{1}{4}\left(\sqrt{3}\right)^{2}
Hei whakarea \sqrt{5} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
\frac{5}{4}+\frac{1}{2}\sqrt{15}+\frac{1}{4}\times 3
Ko te pūrua o \sqrt{3} ko 3.
\frac{5}{4}+\frac{1}{2}\sqrt{15}+\frac{3}{4}
Whakareatia te \frac{1}{4} ki te 3, ka \frac{3}{4}.
2+\frac{1}{2}\sqrt{15}
Tāpirihia te \frac{5}{4} ki te \frac{3}{4}, ka 2.
\left(\frac{1}{2}\sqrt{5}+\frac{1}{2}\sqrt{3}\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{2} ki te \sqrt{5}+\sqrt{3}.
\frac{1}{4}\left(\sqrt{5}\right)^{2}+\frac{1}{2}\sqrt{5}\sqrt{3}+\frac{1}{4}\left(\sqrt{3}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\frac{1}{2}\sqrt{5}+\frac{1}{2}\sqrt{3}\right)^{2}.
\frac{1}{4}\times 5+\frac{1}{2}\sqrt{5}\sqrt{3}+\frac{1}{4}\left(\sqrt{3}\right)^{2}
Ko te pūrua o \sqrt{5} ko 5.
\frac{5}{4}+\frac{1}{2}\sqrt{5}\sqrt{3}+\frac{1}{4}\left(\sqrt{3}\right)^{2}
Whakareatia te \frac{1}{4} ki te 5, ka \frac{5}{4}.
\frac{5}{4}+\frac{1}{2}\sqrt{15}+\frac{1}{4}\left(\sqrt{3}\right)^{2}
Hei whakarea \sqrt{5} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
\frac{5}{4}+\frac{1}{2}\sqrt{15}+\frac{1}{4}\times 3
Ko te pūrua o \sqrt{3} ko 3.
\frac{5}{4}+\frac{1}{2}\sqrt{15}+\frac{3}{4}
Whakareatia te \frac{1}{4} ki te 3, ka \frac{3}{4}.
2+\frac{1}{2}\sqrt{15}
Tāpirihia te \frac{5}{4} ki te \frac{3}{4}, ka 2.