Aromātai
\frac{\sqrt{15}}{2}+2\approx 3.936491673
Whakaroha
\frac{\sqrt{15}}{2} + 2 = 3.936491673
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
[ \frac { 1 } { 2 } ( \sqrt { 5 } + \sqrt { 3 } ) ] ^ { 2 }
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{1}{2}\sqrt{5}+\frac{1}{2}\sqrt{3}\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{2} ki te \sqrt{5}+\sqrt{3}.
\frac{1}{4}\left(\sqrt{5}\right)^{2}+\frac{1}{2}\sqrt{5}\sqrt{3}+\frac{1}{4}\left(\sqrt{3}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\frac{1}{2}\sqrt{5}+\frac{1}{2}\sqrt{3}\right)^{2}.
\frac{1}{4}\times 5+\frac{1}{2}\sqrt{5}\sqrt{3}+\frac{1}{4}\left(\sqrt{3}\right)^{2}
Ko te pūrua o \sqrt{5} ko 5.
\frac{5}{4}+\frac{1}{2}\sqrt{5}\sqrt{3}+\frac{1}{4}\left(\sqrt{3}\right)^{2}
Whakareatia te \frac{1}{4} ki te 5, ka \frac{5}{4}.
\frac{5}{4}+\frac{1}{2}\sqrt{15}+\frac{1}{4}\left(\sqrt{3}\right)^{2}
Hei whakarea \sqrt{5} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
\frac{5}{4}+\frac{1}{2}\sqrt{15}+\frac{1}{4}\times 3
Ko te pūrua o \sqrt{3} ko 3.
\frac{5}{4}+\frac{1}{2}\sqrt{15}+\frac{3}{4}
Whakareatia te \frac{1}{4} ki te 3, ka \frac{3}{4}.
2+\frac{1}{2}\sqrt{15}
Tāpirihia te \frac{5}{4} ki te \frac{3}{4}, ka 2.
\left(\frac{1}{2}\sqrt{5}+\frac{1}{2}\sqrt{3}\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{2} ki te \sqrt{5}+\sqrt{3}.
\frac{1}{4}\left(\sqrt{5}\right)^{2}+\frac{1}{2}\sqrt{5}\sqrt{3}+\frac{1}{4}\left(\sqrt{3}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\frac{1}{2}\sqrt{5}+\frac{1}{2}\sqrt{3}\right)^{2}.
\frac{1}{4}\times 5+\frac{1}{2}\sqrt{5}\sqrt{3}+\frac{1}{4}\left(\sqrt{3}\right)^{2}
Ko te pūrua o \sqrt{5} ko 5.
\frac{5}{4}+\frac{1}{2}\sqrt{5}\sqrt{3}+\frac{1}{4}\left(\sqrt{3}\right)^{2}
Whakareatia te \frac{1}{4} ki te 5, ka \frac{5}{4}.
\frac{5}{4}+\frac{1}{2}\sqrt{15}+\frac{1}{4}\left(\sqrt{3}\right)^{2}
Hei whakarea \sqrt{5} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
\frac{5}{4}+\frac{1}{2}\sqrt{15}+\frac{1}{4}\times 3
Ko te pūrua o \sqrt{3} ko 3.
\frac{5}{4}+\frac{1}{2}\sqrt{15}+\frac{3}{4}
Whakareatia te \frac{1}{4} ki te 3, ka \frac{3}{4}.
2+\frac{1}{2}\sqrt{15}
Tāpirihia te \frac{5}{4} ki te \frac{3}{4}, ka 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}