Aromātai
\frac{6}{5}=1.2
Tauwehe
\frac{2 \cdot 3}{5} = 1\frac{1}{5} = 1.2
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{2^{4}+3^{2}}{2^{2}\times 3^{2}}\right)^{-\frac{1}{2}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
\left(\frac{16+3^{2}}{2^{2}\times 3^{2}}\right)^{-\frac{1}{2}}
Tātaihia te 2 mā te pū o 4, kia riro ko 16.
\left(\frac{16+9}{2^{2}\times 3^{2}}\right)^{-\frac{1}{2}}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\left(\frac{25}{2^{2}\times 3^{2}}\right)^{-\frac{1}{2}}
Tāpirihia te 16 ki te 9, ka 25.
\left(\frac{25}{4\times 3^{2}}\right)^{-\frac{1}{2}}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\left(\frac{25}{4\times 9}\right)^{-\frac{1}{2}}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\left(\frac{25}{36}\right)^{-\frac{1}{2}}
Whakareatia te 4 ki te 9, ka 36.
\frac{6}{5}
Tātaihia te \frac{25}{36} mā te pū o -\frac{1}{2}, kia riro ko \frac{6}{5}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}