Aromātai
\frac{1}{1048576}\approx 0.000000954
Tauwehe
\frac{1}{2 ^ {20}} = 9.5367431640625 \times 10^{-7}
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{\left(2^{9}\right)^{-2}\times \left(3^{4}\right)^{3}\times 3}{\left(2^{6}\times 2^{10}\right)^{-1}\times 3^{6}\times 3^{2}\times 3^{5}}\right)^{10}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 3 me te 6 kia riro ai te 9.
\left(\frac{2^{-18}\times \left(3^{4}\right)^{3}\times 3}{\left(2^{6}\times 2^{10}\right)^{-1}\times 3^{6}\times 3^{2}\times 3^{5}}\right)^{10}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 9 me te -2 kia riro ai te -18.
\left(\frac{2^{-18}\times 3^{12}\times 3}{\left(2^{6}\times 2^{10}\right)^{-1}\times 3^{6}\times 3^{2}\times 3^{5}}\right)^{10}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 4 me te 3 kia riro ai te 12.
\left(\frac{2^{-18}\times 3^{13}}{\left(2^{6}\times 2^{10}\right)^{-1}\times 3^{6}\times 3^{2}\times 3^{5}}\right)^{10}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 12 me te 1 kia riro ai te 13.
\left(\frac{2^{-18}\times 3^{13}}{\left(2^{16}\right)^{-1}\times 3^{6}\times 3^{2}\times 3^{5}}\right)^{10}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 6 me te 10 kia riro ai te 16.
\left(\frac{2^{-18}\times 3^{13}}{2^{-16}\times 3^{6}\times 3^{2}\times 3^{5}}\right)^{10}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 16 me te -1 kia riro ai te -16.
\left(\frac{2^{-18}\times 3^{13}}{2^{-16}\times 3^{8}\times 3^{5}}\right)^{10}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 6 me te 2 kia riro ai te 8.
\left(\frac{2^{-18}\times 3^{13}}{2^{-16}\times 3^{13}}\right)^{10}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 8 me te 5 kia riro ai te 13.
\left(\frac{2^{-18}}{2^{-16}}\right)^{10}
Me whakakore tahi te 3^{13} i te taurunga me te tauraro.
\left(\frac{1}{2^{2}}\right)^{10}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
\left(\frac{1}{4}\right)^{10}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{1}{1048576}
Tātaihia te \frac{1}{4} mā te pū o 10, kia riro ko \frac{1}{1048576}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}