Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{6}+12x^{3}-40=0
Tangohia te 40 mai i ngā taha e rua.
t^{2}+12t-40=0
Whakakapia te t mō te x^{3}.
t=\frac{-12±\sqrt{12^{2}-4\times 1\left(-40\right)}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 12 mō te b, me te -40 mō te c i te ture pūrua.
t=\frac{-12±4\sqrt{19}}{2}
Mahia ngā tātaitai.
t=2\sqrt{19}-6 t=-2\sqrt{19}-6
Whakaotia te whārite t=\frac{-12±4\sqrt{19}}{2} ina he tōrunga te ±, ina he tōraro te ±.
x=-\sqrt[3]{2\sqrt{19}-6}e^{\frac{\pi i}{3}} x=\sqrt[3]{2\sqrt{19}-6}ie^{\frac{\pi i}{6}} x=\sqrt[3]{2\sqrt{19}-6} x=-\sqrt[3]{2\sqrt{19}+6}ie^{\frac{\pi i}{6}} x=-\sqrt[3]{2\sqrt{19}+6} x=\sqrt[3]{2\sqrt{19}+6}e^{\frac{\pi i}{3}}
Mai i te x=t^{3}, ka taea ngā otinga mā te whakaoti te whārite mō ia t.
x^{6}+12x^{3}-40=0
Tangohia te 40 mai i ngā taha e rua.
t^{2}+12t-40=0
Whakakapia te t mō te x^{3}.
t=\frac{-12±\sqrt{12^{2}-4\times 1\left(-40\right)}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 12 mō te b, me te -40 mō te c i te ture pūrua.
t=\frac{-12±4\sqrt{19}}{2}
Mahia ngā tātaitai.
t=2\sqrt{19}-6 t=-2\sqrt{19}-6
Whakaotia te whārite t=\frac{-12±4\sqrt{19}}{2} ina he tōrunga te ±, ina he tōraro te ±.
x=\sqrt[3]{2\sqrt{19}-6} x=\sqrt[3]{-2\sqrt{19}-6}
I te mea ko x=t^{3}, ka riro ngā otinga mā te arotake i te x=\sqrt[3]{t} mō ia t.