Whakaoti mō x (complex solution)
x\in \sqrt[3]{2\left(\sqrt{19}+3\right)}e^{\frac{\pi i}{3}},\sqrt[3]{2\left(\sqrt{19}+3\right)}e^{\frac{5\pi i}{3}},-\sqrt[3]{2\left(\sqrt{19}+3\right)},\sqrt[3]{2\left(\sqrt{19}-3\right)}e^{\frac{4\pi i}{3}},\sqrt[3]{2\left(\sqrt{19}-3\right)},\sqrt[3]{2\left(\sqrt{19}-3\right)}e^{\frac{2\pi i}{3}}
Whakaoti mō x
x=\sqrt[3]{2\sqrt{19}-6}\approx 1.395529599
x=\sqrt[3]{-2\sqrt{19}-6}\approx -2.450648052
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{6}+12x^{3}-40=0
Tangohia te 40 mai i ngā taha e rua.
t^{2}+12t-40=0
Whakakapia te t mō te x^{3}.
t=\frac{-12±\sqrt{12^{2}-4\times 1\left(-40\right)}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 12 mō te b, me te -40 mō te c i te ture pūrua.
t=\frac{-12±4\sqrt{19}}{2}
Mahia ngā tātaitai.
t=2\sqrt{19}-6 t=-2\sqrt{19}-6
Whakaotia te whārite t=\frac{-12±4\sqrt{19}}{2} ina he tōrunga te ±, ina he tōraro te ±.
x=-\sqrt[3]{2\sqrt{19}-6}e^{\frac{\pi i}{3}} x=\sqrt[3]{2\sqrt{19}-6}ie^{\frac{\pi i}{6}} x=\sqrt[3]{2\sqrt{19}-6} x=-\sqrt[3]{2\sqrt{19}+6}ie^{\frac{\pi i}{6}} x=-\sqrt[3]{2\sqrt{19}+6} x=\sqrt[3]{2\sqrt{19}+6}e^{\frac{\pi i}{3}}
Mai i te x=t^{3}, ka taea ngā otinga mā te whakaoti te whārite mō ia t.
x^{6}+12x^{3}-40=0
Tangohia te 40 mai i ngā taha e rua.
t^{2}+12t-40=0
Whakakapia te t mō te x^{3}.
t=\frac{-12±\sqrt{12^{2}-4\times 1\left(-40\right)}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 12 mō te b, me te -40 mō te c i te ture pūrua.
t=\frac{-12±4\sqrt{19}}{2}
Mahia ngā tātaitai.
t=2\sqrt{19}-6 t=-2\sqrt{19}-6
Whakaotia te whārite t=\frac{-12±4\sqrt{19}}{2} ina he tōrunga te ±, ina he tōraro te ±.
x=\sqrt[3]{2\sqrt{19}-6} x=\sqrt[3]{-2\sqrt{19}-6}
I te mea ko x=t^{3}, ka riro ngā otinga mā te arotake i te x=\sqrt[3]{t} mō ia t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}