Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki r
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{rr}{11}
Tuhia te \frac{r}{11}r hei hautanga kotahi.
\frac{r^{2}}{11}
Whakareatia te r ki te r, ka r^{2}.
\frac{1}{11}r^{1}\frac{\mathrm{d}}{\mathrm{d}r}(r^{1})+r^{1}\frac{\mathrm{d}}{\mathrm{d}r}(\frac{1}{11}r^{1})
Mo ētahi pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te hua o ngā pānga e rua ko te pānga tuatahi whakareatia ki te pārōnaki o te pānga tuarua tāpiri i te pānga tuarua whakareatia ki te pārōnaki o te mea tuatahi.
\frac{1}{11}r^{1}r^{1-1}+r^{1}\times \frac{1}{11}r^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{1}{11}r^{1}r^{0}+r^{1}\times \frac{1}{11}r^{0}
Whakarūnātia.
\frac{1}{11}r^{1}+\frac{1}{11}r^{1}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{1+1}{11}r^{1}
Pahekotia ngā kīanga tau ōrite.
\frac{2}{11}r^{1}
Tāpiri \frac{1}{11} ki te \frac{1}{11} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\frac{2}{11}r
Mō tētahi kupu t, t^{1}=t.