Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-22 ab=8\times 15=120
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 8x^{2}+ax+bx+15. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-120 -2,-60 -3,-40 -4,-30 -5,-24 -6,-20 -8,-15 -10,-12
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 120.
-1-120=-121 -2-60=-62 -3-40=-43 -4-30=-34 -5-24=-29 -6-20=-26 -8-15=-23 -10-12=-22
Tātaihia te tapeke mō ia takirua.
a=-12 b=-10
Ko te otinga te takirua ka hoatu i te tapeke -22.
\left(8x^{2}-12x\right)+\left(-10x+15\right)
Tuhia anō te 8x^{2}-22x+15 hei \left(8x^{2}-12x\right)+\left(-10x+15\right).
4x\left(2x-3\right)-5\left(2x-3\right)
Tauwehea te 4x i te tuatahi me te -5 i te rōpū tuarua.
\left(2x-3\right)\left(4x-5\right)
Whakatauwehea atu te kīanga pātahi 2x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
8x^{2}-22x+15=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\times 8\times 15}}{2\times 8}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-22\right)±\sqrt{484-4\times 8\times 15}}{2\times 8}
Pūrua -22.
x=\frac{-\left(-22\right)±\sqrt{484-32\times 15}}{2\times 8}
Whakareatia -4 ki te 8.
x=\frac{-\left(-22\right)±\sqrt{484-480}}{2\times 8}
Whakareatia -32 ki te 15.
x=\frac{-\left(-22\right)±\sqrt{4}}{2\times 8}
Tāpiri 484 ki te -480.
x=\frac{-\left(-22\right)±2}{2\times 8}
Tuhia te pūtakerua o te 4.
x=\frac{22±2}{2\times 8}
Ko te tauaro o -22 ko 22.
x=\frac{22±2}{16}
Whakareatia 2 ki te 8.
x=\frac{24}{16}
Nā, me whakaoti te whārite x=\frac{22±2}{16} ina he tāpiri te ±. Tāpiri 22 ki te 2.
x=\frac{3}{2}
Whakahekea te hautanga \frac{24}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
x=\frac{20}{16}
Nā, me whakaoti te whārite x=\frac{22±2}{16} ina he tango te ±. Tango 2 mai i 22.
x=\frac{5}{4}
Whakahekea te hautanga \frac{20}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
8x^{2}-22x+15=8\left(x-\frac{3}{2}\right)\left(x-\frac{5}{4}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{3}{2} mō te x_{1} me te \frac{5}{4} mō te x_{2}.
8x^{2}-22x+15=8\times \frac{2x-3}{2}\left(x-\frac{5}{4}\right)
Tango \frac{3}{2} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
8x^{2}-22x+15=8\times \frac{2x-3}{2}\times \frac{4x-5}{4}
Tango \frac{5}{4} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
8x^{2}-22x+15=8\times \frac{\left(2x-3\right)\left(4x-5\right)}{2\times 4}
Whakareatia \frac{2x-3}{2} ki te \frac{4x-5}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
8x^{2}-22x+15=8\times \frac{\left(2x-3\right)\left(4x-5\right)}{8}
Whakareatia 2 ki te 4.
8x^{2}-22x+15=\left(2x-3\right)\left(4x-5\right)
Whakakorea atu te tauwehe pūnoa nui rawa 8 i roto i te 8 me te 8.