Whakaoti mō m
m = \frac{2 \sqrt{70}}{5} \approx 3.346640106
m = -\frac{2 \sqrt{70}}{5} \approx -3.346640106
Tohaina
Kua tāruatia ki te papatopenga
600-40=50m^{2}
Whakareatia te m ki te m, ka m^{2}.
560=50m^{2}
Tangohia te 40 i te 600, ka 560.
50m^{2}=560
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
m^{2}=\frac{560}{50}
Whakawehea ngā taha e rua ki te 50.
m^{2}=\frac{56}{5}
Whakahekea te hautanga \frac{560}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
m=\frac{2\sqrt{70}}{5} m=-\frac{2\sqrt{70}}{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
600-40=50m^{2}
Whakareatia te m ki te m, ka m^{2}.
560=50m^{2}
Tangohia te 40 i te 600, ka 560.
50m^{2}=560
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
50m^{2}-560=0
Tangohia te 560 mai i ngā taha e rua.
m=\frac{0±\sqrt{0^{2}-4\times 50\left(-560\right)}}{2\times 50}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 50 mō a, 0 mō b, me -560 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{0±\sqrt{-4\times 50\left(-560\right)}}{2\times 50}
Pūrua 0.
m=\frac{0±\sqrt{-200\left(-560\right)}}{2\times 50}
Whakareatia -4 ki te 50.
m=\frac{0±\sqrt{112000}}{2\times 50}
Whakareatia -200 ki te -560.
m=\frac{0±40\sqrt{70}}{2\times 50}
Tuhia te pūtakerua o te 112000.
m=\frac{0±40\sqrt{70}}{100}
Whakareatia 2 ki te 50.
m=\frac{2\sqrt{70}}{5}
Nā, me whakaoti te whārite m=\frac{0±40\sqrt{70}}{100} ina he tāpiri te ±.
m=-\frac{2\sqrt{70}}{5}
Nā, me whakaoti te whārite m=\frac{0±40\sqrt{70}}{100} ina he tango te ±.
m=\frac{2\sqrt{70}}{5} m=-\frac{2\sqrt{70}}{5}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}