Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

p+q=-35 pq=25\times 12=300
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 25a^{2}+pa+qa+12. Hei kimi p me q, whakaritea tētahi pūnaha kia whakaoti.
-1,-300 -2,-150 -3,-100 -4,-75 -5,-60 -6,-50 -10,-30 -12,-25 -15,-20
I te mea kua tōrunga te pq, he ōrite te tohu o p me q. I te mea kua tōraro te p+q, he tōraro hoki a p me q. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 300.
-1-300=-301 -2-150=-152 -3-100=-103 -4-75=-79 -5-60=-65 -6-50=-56 -10-30=-40 -12-25=-37 -15-20=-35
Tātaihia te tapeke mō ia takirua.
p=-20 q=-15
Ko te otinga te takirua ka hoatu i te tapeke -35.
\left(25a^{2}-20a\right)+\left(-15a+12\right)
Tuhia anō te 25a^{2}-35a+12 hei \left(25a^{2}-20a\right)+\left(-15a+12\right).
5a\left(5a-4\right)-3\left(5a-4\right)
Tauwehea te 5a i te tuatahi me te -3 i te rōpū tuarua.
\left(5a-4\right)\left(5a-3\right)
Whakatauwehea atu te kīanga pātahi 5a-4 mā te whakamahi i te āhuatanga tātai tohatoha.
25a^{2}-35a+12=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
a=\frac{-\left(-35\right)±\sqrt{\left(-35\right)^{2}-4\times 25\times 12}}{2\times 25}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-\left(-35\right)±\sqrt{1225-4\times 25\times 12}}{2\times 25}
Pūrua -35.
a=\frac{-\left(-35\right)±\sqrt{1225-100\times 12}}{2\times 25}
Whakareatia -4 ki te 25.
a=\frac{-\left(-35\right)±\sqrt{1225-1200}}{2\times 25}
Whakareatia -100 ki te 12.
a=\frac{-\left(-35\right)±\sqrt{25}}{2\times 25}
Tāpiri 1225 ki te -1200.
a=\frac{-\left(-35\right)±5}{2\times 25}
Tuhia te pūtakerua o te 25.
a=\frac{35±5}{2\times 25}
Ko te tauaro o -35 ko 35.
a=\frac{35±5}{50}
Whakareatia 2 ki te 25.
a=\frac{40}{50}
Nā, me whakaoti te whārite a=\frac{35±5}{50} ina he tāpiri te ±. Tāpiri 35 ki te 5.
a=\frac{4}{5}
Whakahekea te hautanga \frac{40}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
a=\frac{30}{50}
Nā, me whakaoti te whārite a=\frac{35±5}{50} ina he tango te ±. Tango 5 mai i 35.
a=\frac{3}{5}
Whakahekea te hautanga \frac{30}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
25a^{2}-35a+12=25\left(a-\frac{4}{5}\right)\left(a-\frac{3}{5}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{4}{5} mō te x_{1} me te \frac{3}{5} mō te x_{2}.
25a^{2}-35a+12=25\times \frac{5a-4}{5}\left(a-\frac{3}{5}\right)
Tango \frac{4}{5} mai i a mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
25a^{2}-35a+12=25\times \frac{5a-4}{5}\times \frac{5a-3}{5}
Tango \frac{3}{5} mai i a mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
25a^{2}-35a+12=25\times \frac{\left(5a-4\right)\left(5a-3\right)}{5\times 5}
Whakareatia \frac{5a-4}{5} ki te \frac{5a-3}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
25a^{2}-35a+12=25\times \frac{\left(5a-4\right)\left(5a-3\right)}{25}
Whakareatia 5 ki te 5.
25a^{2}-35a+12=\left(5a-4\right)\left(5a-3\right)
Whakakorea atu te tauwehe pūnoa nui rawa 25 i roto i te 25 me te 25.