Tauwehe
\left(2x-1\right)\left(2x+1\right)\left(5x^{2}+9\right)
Aromātai
20x^{4}+31x^{2}-9
Graph
Tohaina
Kua tāruatia ki te papatopenga
20x^{4}+31x^{2}-9=0
Kia tauwehea ai te kīanga, me whakaoti te whārite ina ōrite ki te 0.
±\frac{9}{20},±\frac{9}{10},±\frac{9}{5},±\frac{9}{4},±\frac{9}{2},±9,±\frac{3}{20},±\frac{3}{10},±\frac{3}{5},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{20},±\frac{1}{10},±\frac{1}{5},±\frac{1}{4},±\frac{1}{2},±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -9, ā, ka wehea e q te whakarea arahanga 20. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=\frac{1}{2}
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
10x^{3}+5x^{2}+18x+9=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te 20x^{4}+31x^{2}-9 ki te 2\left(x-\frac{1}{2}\right)=2x-1, kia riro ko 10x^{3}+5x^{2}+18x+9. Kia tauwehea ai te otinga, me whakaoti te whārite ina ōrite ki te 0.
±\frac{9}{10},±\frac{9}{5},±\frac{9}{2},±9,±\frac{3}{10},±\frac{3}{5},±\frac{3}{2},±3,±\frac{1}{10},±\frac{1}{5},±\frac{1}{2},±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 9, ā, ka wehea e q te whakarea arahanga 10. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=-\frac{1}{2}
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
5x^{2}+9=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te 10x^{3}+5x^{2}+18x+9 ki te 2\left(x+\frac{1}{2}\right)=2x+1, kia riro ko 5x^{2}+9. Kia tauwehea ai te otinga, me whakaoti te whārite ina ōrite ki te 0.
x=\frac{0±\sqrt{0^{2}-4\times 5\times 9}}{2\times 5}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 5 mō te a, te 0 mō te b, me te 9 mō te c i te ture pūrua.
x=\frac{0±\sqrt{-180}}{10}
Mahia ngā tātaitai.
5x^{2}+9
Kāore te pūrau 5x^{2}+9 i whakatauwehea i te mea kāhore ōna pūtake whakahau.
\left(2x-1\right)\left(2x+1\right)\left(5x^{2}+9\right)
Me tuhi anō te kīanga whakatauwehe mā ngā pūtake i riro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}