Whakaoti mō x
x=\frac{1}{3}\approx 0.333333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
6-2x-\left(3x+1\right)=8-2\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 3-x.
6-2x-3x-1=8-2\left(x+2\right)
Hei kimi i te tauaro o 3x+1, kimihia te tauaro o ia taurangi.
6-5x-1=8-2\left(x+2\right)
Pahekotia te -2x me -3x, ka -5x.
5-5x=8-2\left(x+2\right)
Tangohia te 1 i te 6, ka 5.
5-5x=8-2x-4
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te x+2.
5-5x=4-2x
Tangohia te 4 i te 8, ka 4.
5-5x+2x=4
Me tāpiri te 2x ki ngā taha e rua.
5-3x=4
Pahekotia te -5x me 2x, ka -3x.
-3x=4-5
Tangohia te 5 mai i ngā taha e rua.
-3x=-1
Tangohia te 5 i te 4, ka -1.
x=\frac{-1}{-3}
Whakawehea ngā taha e rua ki te -3.
x=\frac{1}{3}
Ka taea te hautanga \frac{-1}{-3} te whakamāmā ki te \frac{1}{3} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}