Aromātai
8x^{2}-20x+15
Kimi Pārōnaki e ai ki x
16x-20
Graph
Tohaina
Kua tāruatia ki te papatopenga
10+20x+8x^{2}-40x+5
Pahekotia te -2x^{2} me 10x^{2}, ka 8x^{2}.
10-20x+8x^{2}+5
Pahekotia te 20x me -40x, ka -20x.
15-20x+8x^{2}
Tāpirihia te 10 ki te 5, ka 15.
\frac{\mathrm{d}}{\mathrm{d}x}(10+20x+8x^{2}-40x+5)
Pahekotia te -2x^{2} me 10x^{2}, ka 8x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(10-20x+8x^{2}+5)
Pahekotia te 20x me -40x, ka -20x.
\frac{\mathrm{d}}{\mathrm{d}x}(15-20x+8x^{2})
Tāpirihia te 10 ki te 5, ka 15.
-20x^{1-1}+2\times 8x^{2-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-20x^{0}+2\times 8x^{2-1}
Tango 1 mai i 1.
-20x^{0}+16x^{2-1}
Whakareatia 2 ki te 8.
-20x^{0}+16x^{1}
Tango 1 mai i 2.
-20x^{0}+16x
Mō tētahi kupu t, t^{1}=t.
-20+16x
Mō tētahi kupu t mahue te 0, t^{0}=1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}