Aromātai
-2v
Kimi Pārōnaki e ai ki v
-2
Pātaitai
Polynomial
= 1 - v - 0 - v - 1
Tohaina
Kua tāruatia ki te papatopenga
1-v+0-v-1
Whakareatia te -1 ki te 0, ka 0.
1-v-v-1
Tāpirihia te 1 ki te 0, ka 1.
1-2v-1
Pahekotia te -v me -v, ka -2v.
-2v
Tangohia te 1 i te 1, ka 0.
\frac{\mathrm{d}}{\mathrm{d}v}(1-v+0-v-1)
Whakareatia te -1 ki te 0, ka 0.
\frac{\mathrm{d}}{\mathrm{d}v}(1-v-v-1)
Tāpirihia te 1 ki te 0, ka 1.
\frac{\mathrm{d}}{\mathrm{d}v}(1-2v-1)
Pahekotia te -v me -v, ka -2v.
\frac{\mathrm{d}}{\mathrm{d}v}(-2v)
Tangohia te 1 i te 1, ka 0.
-2v^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
-2v^{0}
Tango 1 mai i 1.
-2
Mō tētahi kupu t mahue te 0, t^{0}=1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}