Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-x^{2}-6x-4=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
Pūrua -6.
x=\frac{-\left(-6\right)±\sqrt{36+4\left(-4\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-\left(-6\right)±\sqrt{36-16}}{2\left(-1\right)}
Whakareatia 4 ki te -4.
x=\frac{-\left(-6\right)±\sqrt{20}}{2\left(-1\right)}
Tāpiri 36 ki te -16.
x=\frac{-\left(-6\right)±2\sqrt{5}}{2\left(-1\right)}
Tuhia te pūtakerua o te 20.
x=\frac{6±2\sqrt{5}}{2\left(-1\right)}
Ko te tauaro o -6 ko 6.
x=\frac{6±2\sqrt{5}}{-2}
Whakareatia 2 ki te -1.
x=\frac{2\sqrt{5}+6}{-2}
Nā, me whakaoti te whārite x=\frac{6±2\sqrt{5}}{-2} ina he tāpiri te ±. Tāpiri 6 ki te 2\sqrt{5}.
x=-\left(\sqrt{5}+3\right)
Whakawehe 6+2\sqrt{5} ki te -2.
x=\frac{6-2\sqrt{5}}{-2}
Nā, me whakaoti te whārite x=\frac{6±2\sqrt{5}}{-2} ina he tango te ±. Tango 2\sqrt{5} mai i 6.
x=\sqrt{5}-3
Whakawehe 6-2\sqrt{5} ki te -2.
-x^{2}-6x-4=-\left(x-\left(-\left(\sqrt{5}+3\right)\right)\right)\left(x-\left(\sqrt{5}-3\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\left(3+\sqrt{5}\right) mō te x_{1} me te -3+\sqrt{5} mō te x_{2}.