Tauwehe
-3\left(x-2\right)^{2}
Aromātai
-3\left(x-2\right)^{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
3\left(-x^{2}-4+4x\right)
Tauwehea te 3.
-x^{2}+4x-4
Whakaarohia te -x^{2}-4+4x. Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=4 ab=-\left(-4\right)=4
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -x^{2}+ax+bx-4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,4 2,2
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 4.
1+4=5 2+2=4
Tātaihia te tapeke mō ia takirua.
a=2 b=2
Ko te otinga te takirua ka hoatu i te tapeke 4.
\left(-x^{2}+2x\right)+\left(2x-4\right)
Tuhia anō te -x^{2}+4x-4 hei \left(-x^{2}+2x\right)+\left(2x-4\right).
-x\left(x-2\right)+2\left(x-2\right)
Tauwehea te -x i te tuatahi me te 2 i te rōpū tuarua.
\left(x-2\right)\left(-x+2\right)
Whakatauwehea atu te kīanga pātahi x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
3\left(x-2\right)\left(-x+2\right)
Me tuhi anō te kīanga whakatauwehe katoa.
-3x^{2}+12x-12=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-12±\sqrt{12^{2}-4\left(-3\right)\left(-12\right)}}{2\left(-3\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-12±\sqrt{144-4\left(-3\right)\left(-12\right)}}{2\left(-3\right)}
Pūrua 12.
x=\frac{-12±\sqrt{144+12\left(-12\right)}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{-12±\sqrt{144-144}}{2\left(-3\right)}
Whakareatia 12 ki te -12.
x=\frac{-12±\sqrt{0}}{2\left(-3\right)}
Tāpiri 144 ki te -144.
x=\frac{-12±0}{2\left(-3\right)}
Tuhia te pūtakerua o te 0.
x=\frac{-12±0}{-6}
Whakareatia 2 ki te -3.
-3x^{2}+12x-12=-3\left(x-2\right)\left(x-2\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 2 mō te x_{1} me te 2 mō te x_{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}