Aromātai
0
Tauwehe
0
Tohaina
Kua tāruatia ki te papatopenga
17\times \frac{F}{880\times 10^{-6}}\sqrt{\pi \times 0\times 0\times 25}
Whakareatia te 80 ki te 11, ka 880.
17\times \frac{F}{880\times \frac{1}{1000000}}\sqrt{\pi \times 0\times 0\times 25}
Tātaihia te 10 mā te pū o -6, kia riro ko \frac{1}{1000000}.
17\times \frac{F}{\frac{11}{12500}}\sqrt{\pi \times 0\times 0\times 25}
Whakareatia te 880 ki te \frac{1}{1000000}, ka \frac{11}{12500}.
17\times \frac{F\times 12500}{11}\sqrt{\pi \times 0\times 0\times 25}
Whakawehe F ki te \frac{11}{12500} mā te whakarea F ki te tau huripoki o \frac{11}{12500}.
17\times \frac{F\times 12500}{11}\sqrt{\pi \times 0\times 25}
Whakareatia te 0 ki te 0, ka 0.
17\times \frac{F\times 12500}{11}\sqrt{\pi \times 0}
Whakareatia te 0 ki te 25, ka 0.
17\times \frac{F\times 12500}{11}\sqrt{0}
Ko te tau i whakarea ki te kore ka hua ko te kore.
17\times \frac{F\times 12500}{11}\times 0
Tātaitia te pūtakerua o 0 kia tae ki 0.
0\times \frac{F\times 12500}{11}
Whakareatia te 17 ki te 0, ka 0.
0
Ko te tau i whakarea ki te kore ka hua ko te kore.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}